Clinical Research
BibTex RIS Cite

Obstrüktif Uyku Apne Sendromunda Evrelemeye Farklı Bir Bakış Açısı

Year 2025, Volume: 8 Issue: 3, 106 - 115, 31.12.2025
https://doi.org/10.33713/egetbd.1810299

Abstract

AMAÇ: Amerikan Uyku Tıbbı Akademisi (AASM) kriterleri obstrüktif uyku apne sendromunu (OSAS) hafif, orta ve şiddetli olmak üzere üç gruba ayırmaktadır. Mevcut sınıflandırma sistemi, apne-hipopne indeksi (AHİ) >30 olan tüm hastaları şiddetli OSAS olarak kabul etmektedir. Bu çalışma, AHI, vücut kitle indeksi (VKİ), oksijen desatürasyon indeksi (ODİ) ve eşlik eden hastalıklar arasındaki ilişkiyi inceleyerek OSASevrelemesine farklı bir bakış açısı sunmaktadır.
GEREÇ ve YÖNTEMLER: Haziran 2021 ile Haziran 2023 tarihleri arasında uyku laboratuvarımızda polisomnografi uygulanan hastaların verileri retrospektif olarak incelendi. Demografik veriler, antropometrik ölçümler, eşlik eden hastalıklar, Epworth uyku hali ölçeği (ESS) puanları ve polisomnografi kayıtları değerlendirildi. AHI'ye göre sekiz hasta grubu oluşturuldu: Grup 0 (basit horlama), AHI <5; Grup 1 (hafif OSAS), AHI = 5-15; Grup 2 (orta şiddette OSAS), AHI = 16-30; ve Grup 3-7 (şiddetli OSAS), AHI = sırasıyla 31-45, 46-60, 61-75, 76-90 ve >90 idi. AHI, VKİ, ODİ ve eşlik eden hastalıklar arasındaki ilişkiler değerlendirildi.
BULGULAR: Grup 0-7’de sırasıyla 30, 91, 121, 80, 57, 40, 43 ve 22 hasta çalışmaya dahil edildi. ESS skorları, ODİ, VKİ ve eşlik eden hastalıklar arttıkça AHI artıyordu. Ayrıca, şiddetli OSAS grupları arasında anlamlı farklılıklar bulduk.
SONUÇ: Çalışmanın sonuçları, hastaları AASM kriterlerine göre üç gruba ayırmanın OSAS şiddetini belirlemek için yeterli olmayabileceğini düşündürmektedir. Bu nedenle, evrelemede grup sayısının artırılması düşünülmelidir.

Ethical Statement

Çalışma Helsinki Bildirgesi’ne uygun olarak yürütüldü ve Hitit Üniversitesi Klinik Araştırmalar Etik Kurulu tarafından onaylandı (tarih: 1 Kasım 2023; karar numarası: 2023-102). Tüm katılımcılardan yazılı onam alındı.

Supporting Institution

Yok

References

  • 1. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep. 1999; 22: 667-689.
  • 2. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, Harrod CG. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017; 13: 479-504.
  • 3. Malhotra RK. AASM Scoring Manual 3: a step forward for advancing sleep care for patients with obstructive sleep apnea. J Clin Sleep Med. 2024; 20: 835-836.
  • 4. Mohammadieh AM, Chan A, Cistulli PA. Sleep-disordered breathing - clinical spectrum. Aust Dent J. 2024; 69 Suppl 1(Suppl 1): S45-S52.
  • 5. M'saad S, Yangui I, Feki W, Abid N, Bahloul N, Marouen F et al. Syndrome de haute résistance des voies aériennes supérieures: quelles approches cliniques et quelles procédures diagnostiques? [The syndrome of increased upper airways resistance: What are the clinical features and diagnostic procedures?]. Rev Mal Respir. 2015; 32: 1002-1015. French.
  • 6. Mokhlesi B, Masa JF, Brozek JL, Gurubhagavatula I, Murphy PB, Piper AJ et al. Evaluation and Management of Obesity Hypoventilation Syndrome. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2019; 200: e6-e24.
  • 7. Temirbekov D, Güneş S, Yazici ZM, Sayin I. The ignored parameter in the diagnosis of obstructive sleep apnea syndrome: the oxygen desaturation index. Turk Arch Otorhinolaryngol 2018; 56: 1-6.
  • 8. Trzepizur W, Blanchard M, Ganem T, Balusson F, Feuilloy M, Girault JM et al. Sleep Apnea-Specific Hypoxic Burden, Symptom Subtypes, and Risk of Cardiovascular Events and All-Cause Mortality. Am J Respir Crit Care Med. 2022; 205: 108-117.
  • 9. Schwartz AR, Patil SP, Laffan AM, Polotsky V, Schneider H, Smith PL. Obesity and obstructive sleep apnea: pathogenic mechanisms and therapeutic approaches. Proc Am Thorac Soc. 2008; 5: 185-192.
  • 10. Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med. 2015; 3: 310-318.
  • 11. Li X, Zha L, Zhou L, Xu Y, Li X, Yang J, Li H. Diagnostic utility of obstructive sleep apnea screening questionnaires: a comprehensive meta-analysis. Sleep Breath. 2024 Nov 27;29(1):14.
  • 12. Scharf MT. Reliability and efficacy of the Epworth sleepiness scale: is there still a place for it?. Nat Sci Sleep 2022; 14: 2151-2156.
  • 13. Guo O, Song WD, Li W, Zeng C, Li YH, Mo JM et al. Weighted Epworth sleepiness scale predicted the apnea-hypopnea index better. Respir Res 2020; 21: 147. 14. Ghavami T, Kazeminia M, Ahmadi N, Rajati F. Global Prevalence of Obstructive Sleep Apnea in the Elderly and Related Factors: A Systematic Review and Meta-Analysis Study. J Perianesth Nurs. 2023; 38: 865-875.
  • 15. Malhotra A, Ayappa I, Ayas N, Collop N, Kirsch D, Mcardle N, Mehra R, Pack AI, Punjabi N, White DP, Gottlieb DJ. Metrics of sleep apnea severity: beyond the apnea-hypopnea index. Sleep. 2021; 44: zsab030.
  • 16. Zinchuk AV, Gentry MJ, Concato J, Yaggi HK. Phenotypes in obstructive sleep apnea: A definition, examples and evolution of approaches. Sleep Med Rev. 2017; 35: 113-123.
  • 17. Fattal D, Hester S, Wendt L. Body weight and obstructive sleep apnea: a mathematical relationship between body mass index and apnea-hypopnea index in veterans. J Clin Sleep Med. 2022; 18: 2723-2729.
  • 18. Machado MC, Oliveira FD, Silva MS, Souza GM, Dias RM, Mendes RT. The effect of obesity on lung function. Breathe (Sheff). 2016; 12: 370-382.
  • 19. Sutherland K, Lee RW, Cistulli PA, Ng AT, Banham SW, Schwab RJ. Obesity and craniofacial structure as risk factors for obstructive sleep apnoea. Respirology. 2012; 17: 213-221.
  • 20. Shetty S, Parthasarathy S, Mokhlesi B, Grote L, Piper A, Malhotra A. Obesity hypoventilation syndrome: from pathophysiology to clinical management. J Clin Sleep Med. 2015; 11: 427-439.
  • 21. Stanchina ML, Malhotra A, Fogel RB, Trinder J, Edwards JK, White DP. The influence of lung volume on pharyngeal mechanics, collapsibility, and genioglossus activation during sleep. Sleep. 2003; 26: 851-856.
  • 22. D'Angelo GF, de Mello AAF, Schorr F, Gebrim E, Fernandes M, Lima GF, Grad GF, Yanagimori M, Lorenzi-Filho G, Genta PR. Muscle and visceral fat infiltration: A potential mechanism to explain the worsening of obstructive sleep apnea with age. Sleep Med. 2023; 104: 42-48.
  • 23. Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y et al. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther. 2023; 8: 218.
  • 24. Gavin KM, Bessesen DH. Sex Differences in Adipose Tissue Function. Endocrinol Metab Clin North Am. 2020; 49: 215- 228. 25. Azarbarzin A et al. The hypoxic burden of sleep apnoea predicts cardiovascular disease-related mortality. Eur Heart J. 2019; 40: 1149–1157. 26. Parekh A et al. Ventilatory burden as a measure of obstructive sleep apnea severity. Chest. 2023; 164: 153–163. 27. Blekic N et al. Impact of desaturation patterns versus apneahypopnea index in the development of cardiovascular comorbidities. Nat Sci Sleep. 2022; 14: 2141–2153.
  • 28. Nurhak D, Ibrahim Ö. New indices from polysomnographic measures for the severity of obstructive sleep apnea syndrome -a different look at obstructive sleep apnea syndrome. Noro Psikiyatr Ars 2020; 57: 222-227.
  • 29. Kong D, Hu C, Zhu H. Oxygen desaturation index, lowest arterial oxygen saturation and time spent below 90% oxygen saturation as diagnostic markers for obstructive sleep apnea. Am J Transl Res. 2023; 15: 3597-3606.
  • 30. Rashid NH, Zaghi S, Scapuccin M, Camacho M, Certal V, Capasso R. The Value of Oxygen Desaturation Index for Diagnosing Obstructive Sleep Apnea: A Systematic Review. Laryngoscope. 2021; 131: 440-447.
  • 31. Randerath WJ et al. The Baveno classification as a predictor of CPAP titration pressure in obstructive sleep apnea syndrome. Sleep Breath. 2021; 25: 1579–1586.
  • 32. Malhotra A et al. AHI and beyond: toward a more comprehensive understanding of sleep apnea severity. Chest. 2021; 159: 784–796.
  • 33. Hou H, Zhao Y, Yu W, Dong H, Xue X, Ding J, Xing W, Wang W. Association of obstructive sleep apnea with hypertension: A systematic review and meta-analysis. J Glob Health. 2018; 8: 010405.
  • 34. Kwon Y, Tzeng WS, Seo J, Logan JG, Tadic M, Lin GM, Martinez- Garcia MA, Pengo M, Liu X, Cho Y, Drager LF, Healy W, Hong GR. Obstructive sleep apnea and hypertension; critical overview. Clin Hypertens. 2024; 30: 19.
  • 35. Wang L, Wei DH, Zhang J, Cao J. Time Under 90% Oxygen Saturation and Systemic Hypertension in Patients with. Nat Sci Sleep. 2022; 14: 2123-2132.
  • 36. He H, Lachlan T, Chandan N, Lim VG, Kimani P, Ng GA et al. Obstructive Sleep Apnoea and Cardiac Arrhythmias (OSCA) trial: a nested cohort study using injectable loop recorders and Holter monitoring in patients with obstructive sleep apnoea. BMJ Open. 2023; 13: e070884.

A Different Perspective on Apnea–Hypopnea Index-Based Severity Classification in Obstructive Sleep Apnea Syndrome

Year 2025, Volume: 8 Issue: 3, 106 - 115, 31.12.2025
https://doi.org/10.33713/egetbd.1810299

Abstract

OBJECTIVE: The American Academy of Sleep Medicine (AASM) criteria classify obstructive sleep apnea syndrome (OSAS) into three groups: mild, moderate, and severe. The current classification system considers all patients with an apnea-hypopnoea index (AHI) of >30 as having severe OSAS. This study offers a different perspective on OSAS staging by examining the relationship among the AHI, body mass index (BMI), oxygen desaturation index (ODI), and comorbidities.
MATERIALS and METHODS: The data of patients who underwent polysomnography at our sleep laboratory between June 2021 and June 2023 were retrospectively reviewed. Demographic data, anthropometric measurements, comorbidities, Epworth sleepiness scale (ESS) scores, and polysomnography records were evaluated. Eight patient groups were created based on the AHI: group 0 (simple snoring), AHI <5; group 1 (mild OSAS), AHI = 5-15; group 2 (moderate OSAS), AHI = 16-30; and groups 3-7 (severe OSAS), AHI = 31-45, 46-60, 61-75, 76-90, and >90, respectively. Relationships among the AHI, BMI, ODI, and comorbidities were evaluated.
RESULTS: We included 30, 91, 121, 80, 57, 40, 43, 22 patients in groups 0 to 7, respectively. The ESS scores, ODI, BMI, and comorbidities increased as the AHI increased. Furthermore, we found significant differences among the severe OSAS groups.
CONCLUSION: These findings suggest that dividing patients into three groups based on the AASM criteria may be insufficient to determine the severity of OSAS. Therefore, increasing the number of groups in staging should be considered.

Ethical Statement

The study was conducted in accordance with the Declaration of Helsinki and approved by the Clinical Research Ethics Committee of Hitit University (date: 1 November 2023; decision number: 2023-102). Written informed consent was obtained from all the participants.

Supporting Institution

None

References

  • 1. Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. The Report of an American Academy of Sleep Medicine Task Force. Sleep. 1999; 22: 667-689.
  • 2. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, Harrod CG. Clinical Practice Guideline for Diagnostic Testing for Adult Obstructive Sleep Apnea: An American Academy of Sleep Medicine Clinical Practice Guideline. J Clin Sleep Med. 2017; 13: 479-504.
  • 3. Malhotra RK. AASM Scoring Manual 3: a step forward for advancing sleep care for patients with obstructive sleep apnea. J Clin Sleep Med. 2024; 20: 835-836.
  • 4. Mohammadieh AM, Chan A, Cistulli PA. Sleep-disordered breathing - clinical spectrum. Aust Dent J. 2024; 69 Suppl 1(Suppl 1): S45-S52.
  • 5. M'saad S, Yangui I, Feki W, Abid N, Bahloul N, Marouen F et al. Syndrome de haute résistance des voies aériennes supérieures: quelles approches cliniques et quelles procédures diagnostiques? [The syndrome of increased upper airways resistance: What are the clinical features and diagnostic procedures?]. Rev Mal Respir. 2015; 32: 1002-1015. French.
  • 6. Mokhlesi B, Masa JF, Brozek JL, Gurubhagavatula I, Murphy PB, Piper AJ et al. Evaluation and Management of Obesity Hypoventilation Syndrome. An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2019; 200: e6-e24.
  • 7. Temirbekov D, Güneş S, Yazici ZM, Sayin I. The ignored parameter in the diagnosis of obstructive sleep apnea syndrome: the oxygen desaturation index. Turk Arch Otorhinolaryngol 2018; 56: 1-6.
  • 8. Trzepizur W, Blanchard M, Ganem T, Balusson F, Feuilloy M, Girault JM et al. Sleep Apnea-Specific Hypoxic Burden, Symptom Subtypes, and Risk of Cardiovascular Events and All-Cause Mortality. Am J Respir Crit Care Med. 2022; 205: 108-117.
  • 9. Schwartz AR, Patil SP, Laffan AM, Polotsky V, Schneider H, Smith PL. Obesity and obstructive sleep apnea: pathogenic mechanisms and therapeutic approaches. Proc Am Thorac Soc. 2008; 5: 185-192.
  • 10. Heinzer R, Vat S, Marques-Vidal P, Marti-Soler H, Andries D, Tobback N et al. Prevalence of sleep-disordered breathing in the general population: the HypnoLaus study. Lancet Respir Med. 2015; 3: 310-318.
  • 11. Li X, Zha L, Zhou L, Xu Y, Li X, Yang J, Li H. Diagnostic utility of obstructive sleep apnea screening questionnaires: a comprehensive meta-analysis. Sleep Breath. 2024 Nov 27;29(1):14.
  • 12. Scharf MT. Reliability and efficacy of the Epworth sleepiness scale: is there still a place for it?. Nat Sci Sleep 2022; 14: 2151-2156.
  • 13. Guo O, Song WD, Li W, Zeng C, Li YH, Mo JM et al. Weighted Epworth sleepiness scale predicted the apnea-hypopnea index better. Respir Res 2020; 21: 147. 14. Ghavami T, Kazeminia M, Ahmadi N, Rajati F. Global Prevalence of Obstructive Sleep Apnea in the Elderly and Related Factors: A Systematic Review and Meta-Analysis Study. J Perianesth Nurs. 2023; 38: 865-875.
  • 15. Malhotra A, Ayappa I, Ayas N, Collop N, Kirsch D, Mcardle N, Mehra R, Pack AI, Punjabi N, White DP, Gottlieb DJ. Metrics of sleep apnea severity: beyond the apnea-hypopnea index. Sleep. 2021; 44: zsab030.
  • 16. Zinchuk AV, Gentry MJ, Concato J, Yaggi HK. Phenotypes in obstructive sleep apnea: A definition, examples and evolution of approaches. Sleep Med Rev. 2017; 35: 113-123.
  • 17. Fattal D, Hester S, Wendt L. Body weight and obstructive sleep apnea: a mathematical relationship between body mass index and apnea-hypopnea index in veterans. J Clin Sleep Med. 2022; 18: 2723-2729.
  • 18. Machado MC, Oliveira FD, Silva MS, Souza GM, Dias RM, Mendes RT. The effect of obesity on lung function. Breathe (Sheff). 2016; 12: 370-382.
  • 19. Sutherland K, Lee RW, Cistulli PA, Ng AT, Banham SW, Schwab RJ. Obesity and craniofacial structure as risk factors for obstructive sleep apnoea. Respirology. 2012; 17: 213-221.
  • 20. Shetty S, Parthasarathy S, Mokhlesi B, Grote L, Piper A, Malhotra A. Obesity hypoventilation syndrome: from pathophysiology to clinical management. J Clin Sleep Med. 2015; 11: 427-439.
  • 21. Stanchina ML, Malhotra A, Fogel RB, Trinder J, Edwards JK, White DP. The influence of lung volume on pharyngeal mechanics, collapsibility, and genioglossus activation during sleep. Sleep. 2003; 26: 851-856.
  • 22. D'Angelo GF, de Mello AAF, Schorr F, Gebrim E, Fernandes M, Lima GF, Grad GF, Yanagimori M, Lorenzi-Filho G, Genta PR. Muscle and visceral fat infiltration: A potential mechanism to explain the worsening of obstructive sleep apnea with age. Sleep Med. 2023; 104: 42-48.
  • 23. Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y et al. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther. 2023; 8: 218.
  • 24. Gavin KM, Bessesen DH. Sex Differences in Adipose Tissue Function. Endocrinol Metab Clin North Am. 2020; 49: 215- 228. 25. Azarbarzin A et al. The hypoxic burden of sleep apnoea predicts cardiovascular disease-related mortality. Eur Heart J. 2019; 40: 1149–1157. 26. Parekh A et al. Ventilatory burden as a measure of obstructive sleep apnea severity. Chest. 2023; 164: 153–163. 27. Blekic N et al. Impact of desaturation patterns versus apneahypopnea index in the development of cardiovascular comorbidities. Nat Sci Sleep. 2022; 14: 2141–2153.
  • 28. Nurhak D, Ibrahim Ö. New indices from polysomnographic measures for the severity of obstructive sleep apnea syndrome -a different look at obstructive sleep apnea syndrome. Noro Psikiyatr Ars 2020; 57: 222-227.
  • 29. Kong D, Hu C, Zhu H. Oxygen desaturation index, lowest arterial oxygen saturation and time spent below 90% oxygen saturation as diagnostic markers for obstructive sleep apnea. Am J Transl Res. 2023; 15: 3597-3606.
  • 30. Rashid NH, Zaghi S, Scapuccin M, Camacho M, Certal V, Capasso R. The Value of Oxygen Desaturation Index for Diagnosing Obstructive Sleep Apnea: A Systematic Review. Laryngoscope. 2021; 131: 440-447.
  • 31. Randerath WJ et al. The Baveno classification as a predictor of CPAP titration pressure in obstructive sleep apnea syndrome. Sleep Breath. 2021; 25: 1579–1586.
  • 32. Malhotra A et al. AHI and beyond: toward a more comprehensive understanding of sleep apnea severity. Chest. 2021; 159: 784–796.
  • 33. Hou H, Zhao Y, Yu W, Dong H, Xue X, Ding J, Xing W, Wang W. Association of obstructive sleep apnea with hypertension: A systematic review and meta-analysis. J Glob Health. 2018; 8: 010405.
  • 34. Kwon Y, Tzeng WS, Seo J, Logan JG, Tadic M, Lin GM, Martinez- Garcia MA, Pengo M, Liu X, Cho Y, Drager LF, Healy W, Hong GR. Obstructive sleep apnea and hypertension; critical overview. Clin Hypertens. 2024; 30: 19.
  • 35. Wang L, Wei DH, Zhang J, Cao J. Time Under 90% Oxygen Saturation and Systemic Hypertension in Patients with. Nat Sci Sleep. 2022; 14: 2123-2132.
  • 36. He H, Lachlan T, Chandan N, Lim VG, Kimani P, Ng GA et al. Obstructive Sleep Apnoea and Cardiac Arrhythmias (OSCA) trial: a nested cohort study using injectable loop recorders and Holter monitoring in patients with obstructive sleep apnoea. BMJ Open. 2023; 13: e070884.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Clinical Sciences (Other)
Journal Section Clinical Research
Authors

Yasemin Arı Yılmaz 0000-0002-8674-8911

Hilal Boyacı 0000-0003-4331-3552

Burak Yılmaz 0000-0002-8741-9298

İrem Eker Arıcı 0000-0002-6816-1009

Hazel Kara Günaydın 0000-0003-0537-168X

Ayşe Yılmaz 0000-0001-6235-6617

Submission Date October 25, 2025
Acceptance Date November 9, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 8 Issue: 3

Cite

EndNote Arı Yılmaz Y, Boyacı H, Yılmaz B, Eker Arıcı İ, Kara Günaydın H, Yılmaz A (December 1, 2025) Obstrüktif Uyku Apne Sendromunda Evrelemeye Farklı Bir Bakış Açısı. Ege Tıp Bilimleri Dergisi 8 3 106–115.

         35474                 13425                             13428                       34981                   13432 

                     

The articles published in this journal are licensed under Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).