Review
BibTex RIS Cite

The Impact of Artificial Intelligence on the Patient Journey in Medical Tourism: A Management Framework

Year 2025, Volume: 9 Issue: 1, 58 - 67, 30.06.2025
https://doi.org/10.52148/ehta.1701664

Abstract

Objective: Medical tourism presents unique opportunities for delivering patient-centered healthcare, yet the role of artificial intelligence (AI) in enhancing management processes within the patient journey remains underexplored. This study aims to investigate AI’s potential to optimize patient experience and operational efficiency in medical tourism by proposing a comprehensive conceptual framework.

Methods: A structured literature review was conducted, analyzing a total of 100 publications (95 peer-reviewed articles and 5 industry reports) published between 2007 and 2023. Thematic analysis was employed to synthesize findings and develop the AI-Enhanced Medical Tourism Patient Journey Model (AI-MTPJM), integrating AI applications across key stages of the patient journey.

Results: The AI-MTPJM framework outlines five main stages of the medical tourism patient journey: (1) Information Search, (2) Planning and Reservation, (3) Travel and Treatment, (4) Post-treatment Follow-up, and (5) Feedback and Loyalty. Various AI technologies such as virtual assistants, predictive analytics, real-time monitoring, telemedicine, and sentiment analysis are mapped to these stages. These tools contribute to personalized services, improved operational workflows, and enhanced patient satisfaction in international medical tourism destinations.

Conclusion: The AI-MTPJM serves as a strategic bridge between patient-centered service design and data-driven healthcare management. While it holds significant potential for strengthening the competitiveness of medical tourism providers, challenges such as data privacy, cost, and infrastructure requirements must be carefully managed. This framework offers practical insights for stakeholders and lays the groundwork for future empirical research on AI integration in medical tourism management.

Ethical Statement

This study did not involve the use of human or animal subjects and therefore does not require ethical committee approval. The author declares that the research was conducted in accordance with ethical guidelines.

Supporting Institution

This study was not supported financially or materially by any institution or organization. It was carried out entirely through the individual contributions of the author.

Thanks

The author would like to thank colleagues for their valuable support.

References

  • 1. Bathla, G., Raina, A., & Rana, V. S. (2024). Artificialintelligence-drivenenhancements in medicaltourism: Opportunities, challenges, andfutureprospects. In V. Hassan, A. Albattat, & S. Basheer (Eds.), Impact of AI andRobotics on theMedicalTourismIndustry (pp. 139–162). IGI Global. https://doi.org/10.4018/978-1-6684-8653-0.ch007
  • 2. Berry, L. L., &Bendapudi, N. (2007). Healthcare: A fertilefieldfor service research. Journal of Service Research, 10(2), 111–122. https://doi.org/10.1177/1094670507306682
  • 3. Buhalis, D., &Law, R. (2008). Progress in informationtechnologyandtourismmanagement: 20 years on and 10 yearsafterthe Internet—Thestate of eTourismresearch. Tourism Management, 29(4), 609–623. https://doi.org/10.1016/j.tourman.2008.01.005
  • 4. Connell, J. (2013). Contemporarymedicaltourism: Conceptualisation, cultureandcommodification. Tourismmanagement, 34, 1-13.https://doi.org/10.1016/j.tourman.2012.05.009
  • 5. Davenport, T. H., &Ronanki, R. (2018). Artificialintelligencefortherealworld. Harvard Business Review, 96(1), 108–116.
  • 6. Fottler, M. D., Ford, C. R., & Ford, S. (2011). Patient-centeredcareandhospitalperformance: A frameworkforevaluatingtheeffects of patient-centeredcare in hospitals. Journal of Healthcare Management, 56(1), 55–70.
  • 7. GlobalData. (2023). MedicalTourism Market Analysis andForecast, 2023–2028. GlobalDataPlc.
  • 8. Hanefeld, J., Lunt, N., Smith, R., &Horsfall, D. (2015). Why do medicaltouriststraveltowherethey do? The role of networks in determiningmedicaltravel. SocialScience&Medicine, 124, 356–363. https://doi.org/10.1016/j.socscimed.2014.05.016
  • 9. Huang, M.-H., &Rust, R. T. (2021). Engagedto a robot? The role of AI in service. Journal of Service Research, 24(1), 30–48. https://doi.org/10.1177/1094670520960065
  • 10. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... &Wang, Y. (2017). Artificialintelligence in healthcare: Past, presentandfuture. StrokeandVascularNeurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
  • 11. Keskin, E., & Atik, H. (2023). Artificialintelligence in healthcaremanagement: Applications in Turkishmedicaltourism. Journal of HealthSystemsandPolicies, 5(1), 23–35.
  • 12. Lunt, N., Horsfall, D., Hanefeld, J., & Smith, R. (2011). Medicaltourism: Treatments, marketsandhealthsystemimplications: A scopingreview. OECD HealthWorkingPapers, No. 44. OECD Publishing. https://doi.org/10.1787/5k41z7g081r8-en
  • 13. OECD. (2023). Digitalhealthdisparities in developingcountries. OECD Publishing.
  • 14. Parasuraman, A., Zeithaml, V. A., &Berry, L. L. (1988). SERVQUAL: A multiple-itemscaleformeasuringconsumerperceptions of service quality. Journal of Retailing, 64(1), 12–40.
  • 15. Shafik, W. (2024). Artificialintelligenceandthemedicaltourism. InExaminingTouristBehaviorsandCommunityInvolvement in DestinationRejuvenation (pp. 207–233). IGI Global. https://doi.org/10.4018/978-1-6684-8541-0.ch011
  • 16. Tan, C. H., & Lee, S. Y. (2024). AI-drivenlogistics in medicaltourism: TheSingaporeexperience. International Journal of TourismResearch, 26(2), 112–125. https://doi.org/10.1002/jtr.2550
  • 17. Tripathi, R. P. (2023, November). Harnessingthepotential of AI and ML in medicaltourism: Challenges, opportunities, andethicalimplications. In 2023 3rd International Conference on TechnologicalAdvancements in ComputationalSciences (ICTACS) (pp. 1068–1072). IEEE. https://doi.org/10.1109/ICTACS57802.2023.10391284
  • 18. Topol, E. J. (2019). High-performancemedicine: Theconvergence of humanandartificialintelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7

Yapay Zekânın Sağlık Turizminde Hasta Yolculuğuna Etkisi: Yönetsel Bir Çerçeve Önerisi

Year 2025, Volume: 9 Issue: 1, 58 - 67, 30.06.2025
https://doi.org/10.52148/ehta.1701664

Abstract

Özet
Amaç: Sağlık turizmi, hasta odaklı sağlık hizmeti sunumu açısından benzersiz fırsatlar sunmaktadır. Ancak, yapay zekânın (YZ) hasta yolculuğu sürecindeki yönetim uygulamalarını iyileştirme potansiyeli yeterince araştırılmamıştır. Bu çalışma, sağlık turizminde hasta deneyimini ve operasyonel verimliliği artırmak amacıyla yapay zekânın potansiyelini incelemeyi ve kapsamlı bir kavramsal çerçeve önermeyi amaçlamaktadır.

Yöntem: 2007 ile 2023 yılları arasında yayımlanmış toplam 100 yayının (95 hakemli makale ve 5 sektör raporu) analiz edildiği yapılandırılmış bir literatür taraması gerçekleştirilmiştir. Bulguların sentezlenmesi ve Yapay Zekâ Destekli Sağlık Turizmi Hasta Yolculuğu Modeli (YZ-STHYM) geliştirilmesi için tematik analiz yöntemi kullanılmıştır. Bu model, hasta yolculuğunun temel aşamalarında YZ uygulamalarının entegrasyonunu içermektedir.

Bulgular: YZ-STHYM çerçevesi, sağlık turizmi hasta yolculuğunun beş ana aşamasını tanımlamaktadır: (1) Bilgi Arayışı, (2) Planlama ve Rezervasyon, (3) Seyahat ve Tedavi, (4) Tedavi Sonrası Takip ve (5) Geri Bildirim ve Sadakat. Sanal asistanlar, kestirimsel analizler, gerçek zamanlı izleme, uzaktan sağlık hizmetleri (tele-tıp) ve duygu analizi gibi çeşitli YZ teknolojileri bu aşamalara eşleştirilmiştir. Bu araçlar, kişiselleştirilmiş hizmetler, geliştirilmiş operasyonel iş akışları ve uluslararası sağlık turizmi destinasyonlarında hasta memnuniyetinin artırılmasına katkı sağlamaktadır.

Sonuç: YZ-STHYM çerçevesi, hasta odaklı hizmet tasarımı ile veri odaklı sağlık yönetimi arasında stratejik bir köprü işlevi görmektedir. Sağlık turizmi sağlayıcılarının rekabet gücünü artırma potansiyeli taşımasına rağmen, veri gizliliği, maliyet ve altyapı gereksinimleri gibi zorlukların dikkatle yönetilmesi gerekmektedir. Bu çerçeve, paydaşlar için pratik içgörüler sunmakta ve sağlık turizmi yönetiminde yapay zekâ entegrasyonuna yönelik gelecekteki ampirik araştırmalar için zemin hazırlamaktadır.

Ethical Statement

Bu çalışma, herhangi bir insan ya da hayvan denek kullanımı içermediğinden etik kurul onayı gerektirmemektedir. Yazar, araştırmanın etik kurallara uygun şekilde yürütüldüğünü beyan eder.

Supporting Institution

Bu çalışma herhangi bir kurum veya kuruluş tarafından maddi ya da manevi olarak desteklenmemiştir. Çalışma tamamen yazarın bireysel katkılarıyla gerçekleştirilmiştir.

Thanks

Yazar, çalışma sürecinde değerli meslektaşlarına teşekkür eder.

References

  • 1. Bathla, G., Raina, A., & Rana, V. S. (2024). Artificialintelligence-drivenenhancements in medicaltourism: Opportunities, challenges, andfutureprospects. In V. Hassan, A. Albattat, & S. Basheer (Eds.), Impact of AI andRobotics on theMedicalTourismIndustry (pp. 139–162). IGI Global. https://doi.org/10.4018/978-1-6684-8653-0.ch007
  • 2. Berry, L. L., &Bendapudi, N. (2007). Healthcare: A fertilefieldfor service research. Journal of Service Research, 10(2), 111–122. https://doi.org/10.1177/1094670507306682
  • 3. Buhalis, D., &Law, R. (2008). Progress in informationtechnologyandtourismmanagement: 20 years on and 10 yearsafterthe Internet—Thestate of eTourismresearch. Tourism Management, 29(4), 609–623. https://doi.org/10.1016/j.tourman.2008.01.005
  • 4. Connell, J. (2013). Contemporarymedicaltourism: Conceptualisation, cultureandcommodification. Tourismmanagement, 34, 1-13.https://doi.org/10.1016/j.tourman.2012.05.009
  • 5. Davenport, T. H., &Ronanki, R. (2018). Artificialintelligencefortherealworld. Harvard Business Review, 96(1), 108–116.
  • 6. Fottler, M. D., Ford, C. R., & Ford, S. (2011). Patient-centeredcareandhospitalperformance: A frameworkforevaluatingtheeffects of patient-centeredcare in hospitals. Journal of Healthcare Management, 56(1), 55–70.
  • 7. GlobalData. (2023). MedicalTourism Market Analysis andForecast, 2023–2028. GlobalDataPlc.
  • 8. Hanefeld, J., Lunt, N., Smith, R., &Horsfall, D. (2015). Why do medicaltouriststraveltowherethey do? The role of networks in determiningmedicaltravel. SocialScience&Medicine, 124, 356–363. https://doi.org/10.1016/j.socscimed.2014.05.016
  • 9. Huang, M.-H., &Rust, R. T. (2021). Engagedto a robot? The role of AI in service. Journal of Service Research, 24(1), 30–48. https://doi.org/10.1177/1094670520960065
  • 10. Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., ... &Wang, Y. (2017). Artificialintelligence in healthcare: Past, presentandfuture. StrokeandVascularNeurology, 2(4), 230–243. https://doi.org/10.1136/svn-2017-000101
  • 11. Keskin, E., & Atik, H. (2023). Artificialintelligence in healthcaremanagement: Applications in Turkishmedicaltourism. Journal of HealthSystemsandPolicies, 5(1), 23–35.
  • 12. Lunt, N., Horsfall, D., Hanefeld, J., & Smith, R. (2011). Medicaltourism: Treatments, marketsandhealthsystemimplications: A scopingreview. OECD HealthWorkingPapers, No. 44. OECD Publishing. https://doi.org/10.1787/5k41z7g081r8-en
  • 13. OECD. (2023). Digitalhealthdisparities in developingcountries. OECD Publishing.
  • 14. Parasuraman, A., Zeithaml, V. A., &Berry, L. L. (1988). SERVQUAL: A multiple-itemscaleformeasuringconsumerperceptions of service quality. Journal of Retailing, 64(1), 12–40.
  • 15. Shafik, W. (2024). Artificialintelligenceandthemedicaltourism. InExaminingTouristBehaviorsandCommunityInvolvement in DestinationRejuvenation (pp. 207–233). IGI Global. https://doi.org/10.4018/978-1-6684-8541-0.ch011
  • 16. Tan, C. H., & Lee, S. Y. (2024). AI-drivenlogistics in medicaltourism: TheSingaporeexperience. International Journal of TourismResearch, 26(2), 112–125. https://doi.org/10.1002/jtr.2550
  • 17. Tripathi, R. P. (2023, November). Harnessingthepotential of AI and ML in medicaltourism: Challenges, opportunities, andethicalimplications. In 2023 3rd International Conference on TechnologicalAdvancements in ComputationalSciences (ICTACS) (pp. 1068–1072). IEEE. https://doi.org/10.1109/ICTACS57802.2023.10391284
  • 18. Topol, E. J. (2019). High-performancemedicine: Theconvergence of humanandartificialintelligence. Nature Medicine, 25(1), 44–56. https://doi.org/10.1038/s41591-018-0300-7
There are 18 citations in total.

Details

Primary Language English
Subjects Health Policy, Health Management
Journal Section Articles
Authors

Ufuk Burak Karcıoğlu 0009-0006-9131-6407

Publication Date June 30, 2025
Submission Date May 20, 2025
Acceptance Date June 30, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Karcıoğlu, U. B. (2025). The Impact of Artificial Intelligence on the Patient Journey in Medical Tourism: A Management Framework. Eurasian Journal of Health Technology Assessment, 9(1), 58-67. https://doi.org/10.52148/ehta.1701664

It is an open access and double-blinded peer-reviewed journal.

The journal context is provided free of charge to all users.
The scientific responsibility of the articles in the journal belongs to the authors.
The articles that had been published in the journal are not allowed to be used without citation.
© Republic of Turkey, Ministry of Health, General Directorate of Health Services, R&D and Health Technology Assessment Department
All rights are reserved to Republic of Turkey, Ministry of Health, General Directorate of Health Services.