Research Article
BibTex RIS Cite

Görsel Matematik Okuryazarlığı Alt Boyutlarının Geometri Başarısını Yordama Gücü Nedir?

Year 2019, Volume: 19 Issue: 80, 1 - 24, 15.02.2019

Abstract

Problem Durumu: Okuryazarlık kavramı günümüzde şekillenen
bir kavram olarak bilinmekle birlikte tarihsel sürecinin de çok eski olmadığını
araştırmalar neticesinde görmek mümkündür. Ayrıca okuryazarlık kavramı çok
genel bir kavramdır ve bu kavramla ilişkili yeni okuryazarlık türleri
literatürde her geçen gün oluşturulmuş ve oluşturulmaktadır. İnsanların ilk
çağlardan beri mağara duvarlarında görselleri kullanması, görsellerin eğitim
sürecinin neredeyse tamamına entegre edilmesi ve görsel kavramların zihinsel
süreçte somutlaştırmayı sağlayarak kalıcılığı artırması görsel okuryazarlık
kavramını doğurmuştur. Görsel okuryazarlık, Hortin (1980) tarafından,
görsel elemanları okuma ve yorumlama
kapasitesiyle beraber görsel öğeler ile düşünme ve öğrenme becerisi, yani
görsel olarak düşünebilme” şeklinde tanımlanmıştır. Eğitim alanında farklı
okuryazarlıklara dair ortak yanların bütünleşmesinden doğan sanatsal matematik
veya görsel matematik okuryazarlığı gibi okuryazarlıkların tanımlanması ön
plana çıkmıştır. Bu noktadan hareketle görsel matematik okuryazarlığı “günlük
hayatta karşılaşılan problemleri görsel veya uzamsal, tersine görsel veya
uzamsal bilgileri de matematiksel olarak algılayabilme, ifade edebilme, yorumlayabilme,
değerlendirme ve kullanabilme yeterliğidir” (Duran ve Bekdemir, 2013). Görsel
matematik okuryazarlığının günlük yaşamda ve matematik eğitiminde vazgeçilmez
bir anlamı ve önemi vardır. Görsel okuryazarlık ve görsel matematik
okuryazarlığı kavramları, geometri öğrenme alanı ile bilişsel okuryazarlık
becerileri arasındaki ilişki sonucunda ortaya çıkmıştır. Geometri matematiksel
öğrenmenin temel alanlarından biri olmasına rağmen, geometriyle ilgili akademik
başarının altında yatan bilişsel süreçler detaylı bir şekilde incelenmiştir.
Öğretmen
adaylarının görsel matematik okuryazarlığı algılarının, matematik eğitiminde önemli
bir faktör olduğu düşünülmektedir. Bunlara ek olarak, birçok görselin geometri
alanına dâhil edilmesi nedeniyle, bu alandaki başarının görsel matematik
okuryazarlığı algısı ile ilişkili olduğu düşünülmektedir.
Dolayısıyla görsel
matematik okuryazarlık algısı ve alt boyutları ile geometri başarısı arasındaki
ilişkinin incelenmesinin alan yazına yararlı olacağı öngörülmektedir.

Araştırmanın Amacı: Bu
araştırmanın amacı, öğretmen adaylarının görsel matematik okuryazarlığı ile
geometri başarıları arasındaki ilişkiyi incelemektir.
 

Araştırmanın Yöntemi: Mevcut
araştırma, betimsel nitelikli bir çalışmadır. Betimsel çalışmalar, verilen bir
durumu olabildiğince tam ve dikkatli bir şekilde tanımlamaya çalışır. Eğitim
alanındaki araştırmalarda, yaygın olarak betimsel yöntem tarama çalışmaları
yapılmaktadır. Mevcut araştırmada görsel matematik okuryazarlığı ile geometri
başarısı arasındaki ilişkiyi belirten verilerin elde edilmesi noktasında
ilişkisel tarama modeli tercih edilmiştir. Araştırmanın çalışma grubunu,
2015-2016 öğretim yılı güz döneminde, Fırat Üniversitesi, Eğitim Fakültesi,
matematik eğitimi anabilim dalında okuyan matematik öğretmen adayları oluşturmaktadır.
Örneklemde ise bu öğrencilerden basit rastgele örnekleme yöntemiyle seçilen 232
(97 erkek, 135 kadın) öğrenci yer almıştır.

Araştırmada,
veri toplama araçları olarak araştırmacı tarafından geliştirilen ve öğretmen
adaylarının görsel matematik okuryazarlık algı düzeylerini belirlemek amacıyla Görsel
Matematik Okuryazarlığı Ölçeği ve geometri başarı düzeylerini incelemek için Geometri
Başarı Testi kullanılmıştır. Araştırmada öğretmen adaylarının görsel matematik
okuryazarlıkları ile geometri başarıları arasındaki ilişkinin hesaplanmasında
Pearson Momentler Çarpım Korelâsyon Katsayısı yöntemi, görsel matematik
okuryazarlığı algısı ve buna ait alt boyutların geometri başarısının
yordayıcısı olup olmadığı Çoklu Regresyon Analizi yöntemiyle incelenmiştir.

Araştırmanın Bulguları: Çalışma
bulguları dikkate alındığında görsel algı kaynağının geometri başarısı ile
arasında düşük düzeyde ilişki tespit edilmiştir. Nitekim görsel matematik
okuryazarlığının veri kaynaklarından biride görsel algıdır. Bu kaynağın
geometri başarısı ile ilişkisini göz ardı etmek mümkün değildir. Literatür
taraması yapıldığında görsel algıların geometri başarısı ile doğrudan veya
dolaylı yönden ilişkili olduğu görülmektedir (Bekdemir ve Duran, 2012;
Karunaratne, 2000). Yine bulgular neticesinde görsel matematik okuryazarlığının
veri kaynaklarından biri olan örüntü oluşturma boyutunun geometri başarısı ile
arasında düşük düzeyde ilişki tespit edilmiştir. Literatür taraması
yapıldığında da örüntü boyutunun geometri başarısı ile doğrudan veya dolaylı
yönden ilişkili olduğu görülmektedir. Tanışlı ve Köse (2011)’nin yapmış olduğu
araştırmada, öğretmen adayları lineer şekil örüntüsünü yakın/uzak bir adıma
devam ettirmede ve örüntünün kuralını belirlemede sadece şeklin yapısına
odaklanılan görsel ve şekil örüntüsünün sayı örüntüsüne dönüştürüldüğü sayısal
yaklaşımı benimsemişler, bu yaklaşımlar altında da toplam 26 strateji
kullanmışlardır.











Araştırmanın
Sonuçları ve Önerileri:
Görsel algı, geometrik bilgi ve uzamsal zekâ
kaynakları geometri başarısı üzerinde diğer kaynaklara göre daha fazla öneme
sahiptir. Bu kaynaklar geometri başarısının yaklaşık %7’sini açıklamaktadır.
Özellikle uzamsal zekâ kaynağının geometri başarısı üzerindeki etkisi diğer
kaynaklar göz önünde bulundurulduğunda daha yüksek çıkmıştır. Öğrencilerin
görsel matematik okuryazarlıklarını geliştirmek için öncelikle uzamsal zekâ
kaynaklarıyla beraber görsel algı ve geometrik bilgi kaynakları
geliştirilmelidir. Son olarak, somutlaştırma ve örüntü oluşturma kaynakları
geometri başarısına etki eden dördüncü ve beşinci önemli boyutlardır. Bu
boyutların her biri geometri başarısının yaklaşık %4’ünü açıklamaktadır.
Özellikle somutlaştırma boyutunun geometri başarısı üzerindeki etkisi diğer
boyutlar göz önünde bulundurulduğunda daha düşük çıkmıştır. Elde edilen
bulgular doğrultusunda doğrudan ve dolaylı olarak görsel matematik
okuryazarlığı algısı boyutlarının geometri başarısı ile arasındaki ilişkiyi
incelemenin gerekli olduğu sonucuna ulaşılmıştır. Duran ve Bekdemir (2013),
görsel matematik okuryazarlığı öz-yeterlik algısının, görsel matematik
başarısının anlamlı bir yordayıcısı olduğunu söylemişlerdir. Özgen ve Bindak
(2011) çalışmalarında matematik dersi başarı puanının ve matematik dersine
verilen önemin, matematik okuryazarlığı öz-yeterlik inancına yönelik anlamlı
birer yordayıcı olduklarını tespit etmişlerdir. Bu çalışmaların yanında
matematik başarısını yordayan faktörlerin neler olduğunu belirleyen çalışmalar
da literatürde mevcuttur (Doğan ve Barış, 2010; Kayagil, 2010). Genel anlamda
görsel matematik okuryazarlığı alt boyutlarının geometri başarısını yordama
gücü düşük çıksa da anlamlı olması ilişkinin önemini ön plana çıkarmaktadır.
Sonucun böyle çıkmasının sebebi, araştırmanın yalnız bir üniversitede yapılmış
olması veya örneklem sayısının düşük olması olabilir. Ayrıca araştırmada
örneklemin teste ve ölçeğe tüm bilgilerini yansıttıkları varsayılmıştır. Bu
sınırlılıklar doğrultusunda ileride yapılacak olan çalışmalara, konuyla ilgili
daha büyük örneklemler üzerinde araştırmaların yapılması, farklı sayısal
bölümlerin görsel matematik okuryazarlık algılarıyla geometri başarıları
arasındaki ilişkilerinin incelenmesi hâlihazırda bulunan matematik öğretmenleri
üzerinde benzer uygulamalar yapılması ve sonuçlar doğrultusunda bu kavramlar
hakkında eğitimlerin verilmesi önerilmiştir.

References

  • Aisami, R.S. (2015). Learning styles and visual literacy for learning and performance. Procedia - Social and Behavioral Sciences, 176, 538 – 545
  • Alpan, G. (2008). Visual literacy and instructional technology. Yuzuncu Yil University Journal of Education Faculty, 5(1), 74-102.
  • İlhan, A. & Celik, H.C. (2016). Development of visual mathematics literacy scale for elementary education mathematics teacher candidates. US-China Education Review, 6(7), 391- 401.
  • Ayguner, E. (2016). A comparison of eight grade students’ self-efficacy perception of visual mathematics literacy and their actual performance (Unpublished master’s thesis). Eskisehir Osmangazi University, Institute of Educational Sciences, Eskisehir.
  • Bal, A.P. (2012). Teacher candidates’ geometric thinking levels and attitudes to geometry. Journal of Educational Sciences Research, 2(1), 17-34.
  • Beauchamp, D.G., Braden, R.A., & Baca, J.C. (1994). Visual literacy in the digital age: Selected readings from the annual conference of the international visual literacy association. Proceeding of 25th Annual Conference of the International Visual Literacy Association, 13-17 October 1994, Blacksburg, Virginia.
  • Bekdemir, M., & Duran, M. (2012). Development of a visual math literacy self-efficacy perception scale (VMLSEPS) for elementary students. On Dokuz Mayis University Faculty of Education Journal, 31(1), 89-115.
  • Buyukozturk, S. (2018). Data analysis handbook for social sciences (24th edition). Ankara: Pegem Akademi Publishing.
  • Buyukozturk, S., Kilic Cakmak, E., Akgun, O.E., Karadeniz, S., & Demirel, F. (2012). Scientific research methods (11th edition). Ankara: Pegem Akademi Publishing
  • Can, A. (2013). Quantitative data analysis in the scientific research process with SPSS. Ankara: Pegem Academy.
  • Cappelli, A. (2015). Implementing literacy strategies and activities to help math students in geometry. Education Masters, p. 318. Retrieved from http://fisherpub.sjfc.edu/education_ETD_masters/318
  • Colak, S. (2006). An experimental study on the impact of material use on mathematical literary in the context of geometrical concepts in sixth grade students (Unpublished master’s thesis). Gazi University, Institute of Sciences, Ankara.
  • Demir, F., & Altun, M. (2018). Development of mathematical literacy question writing process and skills. Education and Science, 43(194), 19-41
  • Devraj, R., Butler, L.M., Gupchup, G.V., & Poirier, T.I. (2010). Active-learning strategies to develop health literacy knowledge and skills. American journal of pharmaceutical education, 74(8), 137.
  • Dogan, N., & Baris, F. (2010). The levels of attitude, value and self-efficacy of students' mathematical achievement levels in the TIMSS-1999 and TIMSS-2007 exams. Journal of Measurement and Evaluation in Education and Psychology, 1(1), 44-50.
  • Duran, M. (2012). Relationship between visual math literacy self-efficacy perceptions with visual mathematics achievements of elementary 7th grade students (Unpublished master’s thesis). Erzincan University, Institute of Sciences, Erzincan.
  • Duran, M., & Bekdemir, M. (2013). Evaluation of visual math literacy self-efficacy perception with visual mathematics accomplishment. Pegem Journal of Education & Instruction, 3(3), 27-40
  • Dwyer, F. M. (1978). Strategies for improving visual learning. State College, PA: Learning Services.
  • Erden, M., & Akman, Y. (1995). Educational psychology: Teaching developmental learning. Ankara: Arkadas Publications.
  • Gatabi, A.R., Stacey, K., & Gooya, Z. (2012). Investigating grade nine textbook problems for characteristics related to mathematical literacy. Mathematics Education Research Journal, 24(4), 403–421. doi:10.1007/s13394‐012‐0052‐5
  • Gellert, U. (2004). Didactic material confronted with the concept of mathematical literacy. Educational Studies in Mathematics, 55(1), 163-179.
  • Heinich, R., Molenda, M., Russell, J.D., & Smaldino, S. E. (1999). Instructional media and technologies for learning (6th ed.). Upper Saddle River, NJ: Prentice-Hall.
  • Hortin, J. A. (1980). Visual literacy and visual thinking. New York: America publication.
  • Ilhan, A. (2015). Developing the visual mathematics literacy scale for primary mathematics teacher candidates and examining the relationship between visual mathematics literacy and geometry achievements (Unpublished master’s thesis). Firat University Institute of Educational Sciences, Elazig.
  • Kavale, K. (1982). Meta-analysis of the relationship between visual perceptual skills and reading achievement. Journal of Learning Disabilities, 15(1), 42-51.
  • Kayagil, S. (2010). Prediction of mathematics achievement by critical thinking skills in seventh grade students (Unpublished master’s thesis). Selcuk University, Institute of Educational Sciences, Konya.
  • Karunaratne, W. (2000). Case for adult literacy in South East Asia with special reference to Sri Lanka. Paper presented at the Australian Council for Adult Literacy Conference, 21-23 September, Perth, Western Australia: ACAL.
  • Kalayci, S (Ed.). (2010). SPSS applied multivariate statistical techniques. Ankara: Asil Publication.
  • Karasar, N. (2011). Scientific research method. Ankara: Nobel Publication Distribution.
  • Kocaarslan, M., & Celikturk, Z. (2013). Determination of visual literacy competences of education faculty students. Bartin University Education Faculty Journal, 2(2), 344-362.
  • Konyaligolu, A. C. (2003). Investigation of effectiveness of visualization approach on understanding of concepts in vector spaces at the university level (Unpublished doctoral dissertation), Ataturk University, Institute of Sciences, Erzurum.
  • Levie, W. H. (1987). Research on pictures: A guide to the literature. In D. M. Willows & H. A. Houghton (Eds.), The psychology of illustration: Vol I. Basic research (pp. 1-50). New York: Springer-Verlag.
  • Marcolin, S., & Abraham, A. (2006). Financial literacy research: Current literature and future opportunities. In P. Basu, G. O' Neill & A. Travaglione (Eds.), Proceedings of the 3rd International Conference on Contemporary Business, Leura NSW, 21-22 September 2006. Australia: Faculty of Commerce, Charles Stuart University
  • Manin, Y. I. (2006). The notion of dimension in geometry and algebra. Bull. Amer. Math. Soc. (N.S.), 43 (2), 139–161. Retrieved from http://www.ams.org/journals/ bull/2006-43-02/S0273-0979-06-01081-0/ S0273-0979-06-01081-0.pdf
  • Turkish Ministry of National Education. (2013). Primary mathematics lesson 6-8. Grade curriculum. Ankara: Board of Education and Training Board.
  • Nalinci, G. Z., & Yapici, M. (2015). A discussion of the practicality of the visual literacy competency standards for higher education. Anadolu Journal of Educational Sciences International, Art Education Special Issue, (1), 225-241.
  • National Educational Psychological Service. (2015). Visual perception. Retrieved from https://www.education.ie/en/Schools-Colleges/Services/National-Educational-Psychological-Service-NEPS-/NEPS Guides/Cognitive-Skills/Cognitive-Skills-Visual-Perception.pdf
  • National Council of Teachers of Mathematics. (2000). Principal and standards for school mathematics. Reston: NCTM Publications.
  • Nemirovsky, R., & Noble, T. (1997). On mathematical visualization and the place where we live. Educational Studies in Mathematics, 33(2), 99–131
  • Olkun, S., Altun, A., & Deryakulu, D. (2009). Development and evaluation of a case‐based digital learning tool about children's mathematical thinking for elementary school teachers (L‐TEST). European Journal of Teacher Education, 32(2), 151-165.
  • Ontario Ministry of Education. (2004). Leading math success: Mathematical literacy, grades 7–12. The Report of the Expert Panel on Student Success in Ontario. Retrieved from http://www.edu.gov.on.ca/eng/document/reports/numeracy/numeracyreport.pdf
  • Oral, B., & Ilhan, M. (2012). Analysis of geometric thinking levels of candidate mathematics teachers of primary and secondary schools in terms of various variables. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 6(1), 201-219.
  • Ozdemir, F. (2010). Analysis of factors which effects the mathematics achievements in PISA 2003 high school students and Kanuni High School Students (Unpublished master’s thesis). Hacettepe University, Institute of Social Sciences, Ankara.
  • Ozdemir, F., Duran, M., & Kaplan, A. (2016). Investigation of middle school students’ self-efficacy perceptions of visual mathematics literacy and perceptions of problem-solving skill. Journal of Theoretical Educational Science, 9(4), 532-554
  • Ozer, Y., & Anil, D. (2011). Examining the factors affecting students’ science and Mathematics achievement with structural equation modeling. Hacettepe University Journal of Education, 41(1), 313-324.
  • Ozgen, K., & Bindak, R. (2011). Determination of self-efficacy beliefs of high school students towards math literacy. Educational Sciences: Theory & Practice, 11(2), 1073-1089.
  • Rapp, W. H. (2009). Avoiding math taboos: Effective math strategies for visual-spatial learners. Teaching Exceptional Children Plus, 6(2), 1-12.
  • Roblyer, M. D., & Bennett, E.K. (2001). The fifth literacy: Research to support a mandate for technology-based visual literacy in pre-service teacher education. Journal of Computing in Teacher Education, 17(2), 8-15.
  • Sevimli, E., Yildiz, C., & Delice, A. (2008). An overview of the visualization process in geometry questions: Where do I draw? Paper presented at the 8th National Science and Mathematics Education Congress, Abant Izzet Baysal University, Bolu.
  • Sigmundsson, H., Anholt, S., & Talcott, J. B. (2010). Are poor mathematics skills associated with visual deficits in temporal processing? Neurosci. Lett. 469, 248–250. Student Selection and Placement Center. (2017). Numerical information for 2017-YGS and 2016 LYS exams. Retrieved from http://www.osym.gov.tr/
  • Tambychik, T., Meerah, T. S. M., & Aziz, Z. (2010). Mathematics skills difficulties: A mixture of intricacies. Procedia-Social and Behavioral Sciences, 7(1), 171-180.
  • Tanisli, D., & Kose, N. Y. (2011). Generalization strategies about linear figural patterns: effect of figural and numerical clues. Education and Science, 36(160), 184-198.
  • Tat, E. T. (2018). Prospective mathematics teachers' perceived self-efficacy in mathematical literacy. Elementary Education Online, 17(2), 489-499
  • Tekin, B., & Tekin, S. (2004). A research on mathematical literacy levels of preservice mathematics teachers’. Retrieved from http://matder.org.tr
  • Tekin, H. (1997). Measurement and evaluation in education. Ankara: Mars Printing House.
  • Tutkun, O. E., Erdogan, D. G., & Ozturk, B. (2014). Levels of visual mathematics literacy self-efficacy perception of the secondary school students. Middle Eastern & African Journal of Educational Research, 8, 19-27.
  • Turgut, M. (2010). The effect of technology assisted linear algebra instruction on pre-service primary mathematics teachers’ spatial ability (Unpublished doctoral dissertation). Dokuz Eylul University, Institute of Educational Sciences, Izmir.
  • Uredi, I., & Uredi, L. (2005). The predictive power of self-regulation strategies and motivational beliefs on mathematics achievement of primary school 8th grade students. Mersin University Journal of Education Faculty, 1(2), 250-260.
  • Van Garderen, D. (2006). Spatial visualization, visual imagery, and mathematical problem solving of students with varying abilities. Journal of Learning Disabilities, 39(6), 496-506.
  • Yerushalmy, M. (2006). Challenging known transitions: Research of technology supported long-term learning. Paper presented at the conference of the Seventeenth International Commission on Mathematical Instruction Study, Hanoi University of Technology, Hanoi.
  • Yilmaz, E. T. (2006). The factors that effect the mathematics achievement of the students of Turkey in programme for international student assessment (PISA) (Unpublished master’s thesis). Hacettepe University, Institute of Social Sciences, Ankara.
  • Yilmaz, H. (1998). Measurement and evaluation in education (3rd bs.). Ankara: Micro Publishing.

What is the Predictive Power of Visual Mathematics Literacy Perception and Its Sub-dimensions for Geometry Success?

Year 2019, Volume: 19 Issue: 80, 1 - 24, 15.02.2019

Abstract

Purpose: In this study, it was aimed to
examine the relationship between the visual mathematics literacy perceptions
and its sub-dimension for geometry success levels of prospective teachers. It
was also aimed to examine to what extent visual mathematics literacy perception
and its sub-dimensions predicted geometry success.


Research Methods: This study was designed in accordance with a
qualitative, scanning model. The research was carried out with 232 (97 males
and 135 females) prospective teachers who studied in Mathematics Education
Program at Firat University, Education Faculty, and were selected by simple
random sampling method. "Visual Mathematics Literacy Perception Scale"
and "Geometry
Success Test" were employed in this
study as data collection tools. Correlation analysis and multiple regression
analysis were used for analyzing the data.





Findings:
After the data were analyzed, it
was determined that there was a positive relationship between the visual
mathematics literacy perception and geometry success of prospective teachers.
It was also determined that visual mathematics literacy perception is a
meaningful predictor of geometry success.




Implications for research and practice:

Providing trainings on these concepts in the direction of the results, to
investigate the concept of perception on other learning areas of mathematics
and conducting experimental studies on the perception of visual mathematics
literacy are suggested.



 

References

  • Aisami, R.S. (2015). Learning styles and visual literacy for learning and performance. Procedia - Social and Behavioral Sciences, 176, 538 – 545
  • Alpan, G. (2008). Visual literacy and instructional technology. Yuzuncu Yil University Journal of Education Faculty, 5(1), 74-102.
  • İlhan, A. & Celik, H.C. (2016). Development of visual mathematics literacy scale for elementary education mathematics teacher candidates. US-China Education Review, 6(7), 391- 401.
  • Ayguner, E. (2016). A comparison of eight grade students’ self-efficacy perception of visual mathematics literacy and their actual performance (Unpublished master’s thesis). Eskisehir Osmangazi University, Institute of Educational Sciences, Eskisehir.
  • Bal, A.P. (2012). Teacher candidates’ geometric thinking levels and attitudes to geometry. Journal of Educational Sciences Research, 2(1), 17-34.
  • Beauchamp, D.G., Braden, R.A., & Baca, J.C. (1994). Visual literacy in the digital age: Selected readings from the annual conference of the international visual literacy association. Proceeding of 25th Annual Conference of the International Visual Literacy Association, 13-17 October 1994, Blacksburg, Virginia.
  • Bekdemir, M., & Duran, M. (2012). Development of a visual math literacy self-efficacy perception scale (VMLSEPS) for elementary students. On Dokuz Mayis University Faculty of Education Journal, 31(1), 89-115.
  • Buyukozturk, S. (2018). Data analysis handbook for social sciences (24th edition). Ankara: Pegem Akademi Publishing.
  • Buyukozturk, S., Kilic Cakmak, E., Akgun, O.E., Karadeniz, S., & Demirel, F. (2012). Scientific research methods (11th edition). Ankara: Pegem Akademi Publishing
  • Can, A. (2013). Quantitative data analysis in the scientific research process with SPSS. Ankara: Pegem Academy.
  • Cappelli, A. (2015). Implementing literacy strategies and activities to help math students in geometry. Education Masters, p. 318. Retrieved from http://fisherpub.sjfc.edu/education_ETD_masters/318
  • Colak, S. (2006). An experimental study on the impact of material use on mathematical literary in the context of geometrical concepts in sixth grade students (Unpublished master’s thesis). Gazi University, Institute of Sciences, Ankara.
  • Demir, F., & Altun, M. (2018). Development of mathematical literacy question writing process and skills. Education and Science, 43(194), 19-41
  • Devraj, R., Butler, L.M., Gupchup, G.V., & Poirier, T.I. (2010). Active-learning strategies to develop health literacy knowledge and skills. American journal of pharmaceutical education, 74(8), 137.
  • Dogan, N., & Baris, F. (2010). The levels of attitude, value and self-efficacy of students' mathematical achievement levels in the TIMSS-1999 and TIMSS-2007 exams. Journal of Measurement and Evaluation in Education and Psychology, 1(1), 44-50.
  • Duran, M. (2012). Relationship between visual math literacy self-efficacy perceptions with visual mathematics achievements of elementary 7th grade students (Unpublished master’s thesis). Erzincan University, Institute of Sciences, Erzincan.
  • Duran, M., & Bekdemir, M. (2013). Evaluation of visual math literacy self-efficacy perception with visual mathematics accomplishment. Pegem Journal of Education & Instruction, 3(3), 27-40
  • Dwyer, F. M. (1978). Strategies for improving visual learning. State College, PA: Learning Services.
  • Erden, M., & Akman, Y. (1995). Educational psychology: Teaching developmental learning. Ankara: Arkadas Publications.
  • Gatabi, A.R., Stacey, K., & Gooya, Z. (2012). Investigating grade nine textbook problems for characteristics related to mathematical literacy. Mathematics Education Research Journal, 24(4), 403–421. doi:10.1007/s13394‐012‐0052‐5
  • Gellert, U. (2004). Didactic material confronted with the concept of mathematical literacy. Educational Studies in Mathematics, 55(1), 163-179.
  • Heinich, R., Molenda, M., Russell, J.D., & Smaldino, S. E. (1999). Instructional media and technologies for learning (6th ed.). Upper Saddle River, NJ: Prentice-Hall.
  • Hortin, J. A. (1980). Visual literacy and visual thinking. New York: America publication.
  • Ilhan, A. (2015). Developing the visual mathematics literacy scale for primary mathematics teacher candidates and examining the relationship between visual mathematics literacy and geometry achievements (Unpublished master’s thesis). Firat University Institute of Educational Sciences, Elazig.
  • Kavale, K. (1982). Meta-analysis of the relationship between visual perceptual skills and reading achievement. Journal of Learning Disabilities, 15(1), 42-51.
  • Kayagil, S. (2010). Prediction of mathematics achievement by critical thinking skills in seventh grade students (Unpublished master’s thesis). Selcuk University, Institute of Educational Sciences, Konya.
  • Karunaratne, W. (2000). Case for adult literacy in South East Asia with special reference to Sri Lanka. Paper presented at the Australian Council for Adult Literacy Conference, 21-23 September, Perth, Western Australia: ACAL.
  • Kalayci, S (Ed.). (2010). SPSS applied multivariate statistical techniques. Ankara: Asil Publication.
  • Karasar, N. (2011). Scientific research method. Ankara: Nobel Publication Distribution.
  • Kocaarslan, M., & Celikturk, Z. (2013). Determination of visual literacy competences of education faculty students. Bartin University Education Faculty Journal, 2(2), 344-362.
  • Konyaligolu, A. C. (2003). Investigation of effectiveness of visualization approach on understanding of concepts in vector spaces at the university level (Unpublished doctoral dissertation), Ataturk University, Institute of Sciences, Erzurum.
  • Levie, W. H. (1987). Research on pictures: A guide to the literature. In D. M. Willows & H. A. Houghton (Eds.), The psychology of illustration: Vol I. Basic research (pp. 1-50). New York: Springer-Verlag.
  • Marcolin, S., & Abraham, A. (2006). Financial literacy research: Current literature and future opportunities. In P. Basu, G. O' Neill & A. Travaglione (Eds.), Proceedings of the 3rd International Conference on Contemporary Business, Leura NSW, 21-22 September 2006. Australia: Faculty of Commerce, Charles Stuart University
  • Manin, Y. I. (2006). The notion of dimension in geometry and algebra. Bull. Amer. Math. Soc. (N.S.), 43 (2), 139–161. Retrieved from http://www.ams.org/journals/ bull/2006-43-02/S0273-0979-06-01081-0/ S0273-0979-06-01081-0.pdf
  • Turkish Ministry of National Education. (2013). Primary mathematics lesson 6-8. Grade curriculum. Ankara: Board of Education and Training Board.
  • Nalinci, G. Z., & Yapici, M. (2015). A discussion of the practicality of the visual literacy competency standards for higher education. Anadolu Journal of Educational Sciences International, Art Education Special Issue, (1), 225-241.
  • National Educational Psychological Service. (2015). Visual perception. Retrieved from https://www.education.ie/en/Schools-Colleges/Services/National-Educational-Psychological-Service-NEPS-/NEPS Guides/Cognitive-Skills/Cognitive-Skills-Visual-Perception.pdf
  • National Council of Teachers of Mathematics. (2000). Principal and standards for school mathematics. Reston: NCTM Publications.
  • Nemirovsky, R., & Noble, T. (1997). On mathematical visualization and the place where we live. Educational Studies in Mathematics, 33(2), 99–131
  • Olkun, S., Altun, A., & Deryakulu, D. (2009). Development and evaluation of a case‐based digital learning tool about children's mathematical thinking for elementary school teachers (L‐TEST). European Journal of Teacher Education, 32(2), 151-165.
  • Ontario Ministry of Education. (2004). Leading math success: Mathematical literacy, grades 7–12. The Report of the Expert Panel on Student Success in Ontario. Retrieved from http://www.edu.gov.on.ca/eng/document/reports/numeracy/numeracyreport.pdf
  • Oral, B., & Ilhan, M. (2012). Analysis of geometric thinking levels of candidate mathematics teachers of primary and secondary schools in terms of various variables. Necatibey Faculty of Education Electronic Journal of Science and Mathematics Education, 6(1), 201-219.
  • Ozdemir, F. (2010). Analysis of factors which effects the mathematics achievements in PISA 2003 high school students and Kanuni High School Students (Unpublished master’s thesis). Hacettepe University, Institute of Social Sciences, Ankara.
  • Ozdemir, F., Duran, M., & Kaplan, A. (2016). Investigation of middle school students’ self-efficacy perceptions of visual mathematics literacy and perceptions of problem-solving skill. Journal of Theoretical Educational Science, 9(4), 532-554
  • Ozer, Y., & Anil, D. (2011). Examining the factors affecting students’ science and Mathematics achievement with structural equation modeling. Hacettepe University Journal of Education, 41(1), 313-324.
  • Ozgen, K., & Bindak, R. (2011). Determination of self-efficacy beliefs of high school students towards math literacy. Educational Sciences: Theory & Practice, 11(2), 1073-1089.
  • Rapp, W. H. (2009). Avoiding math taboos: Effective math strategies for visual-spatial learners. Teaching Exceptional Children Plus, 6(2), 1-12.
  • Roblyer, M. D., & Bennett, E.K. (2001). The fifth literacy: Research to support a mandate for technology-based visual literacy in pre-service teacher education. Journal of Computing in Teacher Education, 17(2), 8-15.
  • Sevimli, E., Yildiz, C., & Delice, A. (2008). An overview of the visualization process in geometry questions: Where do I draw? Paper presented at the 8th National Science and Mathematics Education Congress, Abant Izzet Baysal University, Bolu.
  • Sigmundsson, H., Anholt, S., & Talcott, J. B. (2010). Are poor mathematics skills associated with visual deficits in temporal processing? Neurosci. Lett. 469, 248–250. Student Selection and Placement Center. (2017). Numerical information for 2017-YGS and 2016 LYS exams. Retrieved from http://www.osym.gov.tr/
  • Tambychik, T., Meerah, T. S. M., & Aziz, Z. (2010). Mathematics skills difficulties: A mixture of intricacies. Procedia-Social and Behavioral Sciences, 7(1), 171-180.
  • Tanisli, D., & Kose, N. Y. (2011). Generalization strategies about linear figural patterns: effect of figural and numerical clues. Education and Science, 36(160), 184-198.
  • Tat, E. T. (2018). Prospective mathematics teachers' perceived self-efficacy in mathematical literacy. Elementary Education Online, 17(2), 489-499
  • Tekin, B., & Tekin, S. (2004). A research on mathematical literacy levels of preservice mathematics teachers’. Retrieved from http://matder.org.tr
  • Tekin, H. (1997). Measurement and evaluation in education. Ankara: Mars Printing House.
  • Tutkun, O. E., Erdogan, D. G., & Ozturk, B. (2014). Levels of visual mathematics literacy self-efficacy perception of the secondary school students. Middle Eastern & African Journal of Educational Research, 8, 19-27.
  • Turgut, M. (2010). The effect of technology assisted linear algebra instruction on pre-service primary mathematics teachers’ spatial ability (Unpublished doctoral dissertation). Dokuz Eylul University, Institute of Educational Sciences, Izmir.
  • Uredi, I., & Uredi, L. (2005). The predictive power of self-regulation strategies and motivational beliefs on mathematics achievement of primary school 8th grade students. Mersin University Journal of Education Faculty, 1(2), 250-260.
  • Van Garderen, D. (2006). Spatial visualization, visual imagery, and mathematical problem solving of students with varying abilities. Journal of Learning Disabilities, 39(6), 496-506.
  • Yerushalmy, M. (2006). Challenging known transitions: Research of technology supported long-term learning. Paper presented at the conference of the Seventeenth International Commission on Mathematical Instruction Study, Hanoi University of Technology, Hanoi.
  • Yilmaz, E. T. (2006). The factors that effect the mathematics achievement of the students of Turkey in programme for international student assessment (PISA) (Unpublished master’s thesis). Hacettepe University, Institute of Social Sciences, Ankara.
  • Yilmaz, H. (1998). Measurement and evaluation in education (3rd bs.). Ankara: Micro Publishing.
There are 62 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Aziz Ilhan This is me

Tayfun Tutak

Halil Coskun Celık

Publication Date February 15, 2019
Published in Issue Year 2019 Volume: 19 Issue: 80

Cite

APA Ilhan, A., Tutak, T., & Coskun Celık, H. (2019). What is the Predictive Power of Visual Mathematics Literacy Perception and Its Sub-dimensions for Geometry Success?. Eurasian Journal of Educational Research, 19(80), 1-24.
AMA Ilhan A, Tutak T, Coskun Celık H. What is the Predictive Power of Visual Mathematics Literacy Perception and Its Sub-dimensions for Geometry Success?. Eurasian Journal of Educational Research. February 2019;19(80):1-24.
Chicago Ilhan, Aziz, Tayfun Tutak, and Halil Coskun Celık. “What Is the Predictive Power of Visual Mathematics Literacy Perception and Its Sub-Dimensions for Geometry Success?”. Eurasian Journal of Educational Research 19, no. 80 (February 2019): 1-24.
EndNote Ilhan A, Tutak T, Coskun Celık H (February 1, 2019) What is the Predictive Power of Visual Mathematics Literacy Perception and Its Sub-dimensions for Geometry Success?. Eurasian Journal of Educational Research 19 80 1–24.
IEEE A. Ilhan, T. Tutak, and H. Coskun Celık, “What is the Predictive Power of Visual Mathematics Literacy Perception and Its Sub-dimensions for Geometry Success?”, Eurasian Journal of Educational Research, vol. 19, no. 80, pp. 1–24, 2019.
ISNAD Ilhan, Aziz et al. “What Is the Predictive Power of Visual Mathematics Literacy Perception and Its Sub-Dimensions for Geometry Success?”. Eurasian Journal of Educational Research 19/80 (February 2019), 1-24.
JAMA Ilhan A, Tutak T, Coskun Celık H. What is the Predictive Power of Visual Mathematics Literacy Perception and Its Sub-dimensions for Geometry Success?. Eurasian Journal of Educational Research. 2019;19:1–24.
MLA Ilhan, Aziz et al. “What Is the Predictive Power of Visual Mathematics Literacy Perception and Its Sub-Dimensions for Geometry Success?”. Eurasian Journal of Educational Research, vol. 19, no. 80, 2019, pp. 1-24.
Vancouver Ilhan A, Tutak T, Coskun Celık H. What is the Predictive Power of Visual Mathematics Literacy Perception and Its Sub-dimensions for Geometry Success?. Eurasian Journal of Educational Research. 2019;19(80):1-24.