Research Article
BibTex RIS Cite

Cr Modifiyeli Cu-Ni-Si Alaşımlarının Mekanik ve Elektriksel Özellikleri Üzerine Aşırı Plastik Deformasyon Etkisi

Year 2021, , 866 - 872, 30.11.2021
https://doi.org/10.31590/ejosat.1004910

Abstract

Bakır alaşımları, sahip oldukları yüksek mukavemet, korozyon direnci ve iletkenlikleri nedeniyle otomotiv, elektronik, petrokimya ve nükleer uygulamalarında yaygın olarak kullanılmaktadır. Bu endüstrilerde üstün özelliklerinden dolayı çoğunlukla berilyum içeren bakır alaşımları kullanılmakla birlikte, berilyumun toksik etkileri nedeniyle alternatif bakır alaşımlarına ihtiyaç duyulmaktadır. Bunlar arasında Corson alaşımları olarak bilinen Cu-Ni-Si alaşımları yaygın olarak tercih edilmektedir. Hem alaşımlama hem de termomekanik işlemler, bu alaşım sisteminde berilyum içeren Cu alaşımlarına kıyasla benzer ve hatta daha iyi özellikler elde etme noktasında önemli rol oynamaktadır. Bu araştırmada, aşırı plastik deformasyon ve akabinde gerçekleştirilen ısıl işlemlerin (çökelme sertleşmesi) Cr ile modifiye edilmiş Cu-Ni-Si alaşımlarının mukavemeti, sertliği ve elektrik iletkenliği üzerine etkisini karakterize etmek için kombine termomekanik işlem uygulanmıştır. Farklı kimyasal bileşime (Cr içeriğine) sahip bakır alaşımları, çözeltiye alma ve su verme işleminden sonra eş kanallı açısal pres (EKAP) yöntemi kullanılarak şekillendirilmiştir. Cr modifiyeli alaşımların davranışı ayrıntılı olarak karakterize edilmiş ve kombine termomekanik işlem ile alaşımdaki Cr içeriğinin nihai mekanik ve fiziksel özellikler üzerine etkisi irdelenmiştir. Elde edilen sonuçlar, ağırlıkça %0,4, 0,6 ve 0,8 Cr içeren çözeltiye alınmış alaşımların yaşlandırılması sırasında hem sertlikte hem de elektriksel iletkenlikte önemli bir artış gözlendiğini ve artan Cr içeriğinin Cu-Ni-Si alaşımının sertliğini ve iletkenliğini artırdığını göstermektedir. İki paso EKAP ile işlemi neticesinde, incelenen tüm alaşımların sertliği çözeltiye alınmış duruma kıyasla önemli ölçüde artarken, elektriksel iletkenliği aşırı plastik deformasyondan negatif etkilenmiştir. EKAPlanmış alaşımlarının mekanik özellikleri, EKAP sonrası yaşlandırma ile daha da geliştirilebilmektedir. Bu nedenle, yaygın olarak kullanılan bakır-berilyum alaşımlarına alternatif Cu-Ni-Si alaşımlarının aşırı plastik deformasyon ile geliştirilmesi mümkündür. İlk sonuçlar, son zamanların yüksek öncelikli alanları arasında yer alan elektronik endüstrisi, yüksek hız raylı sistemler, uzay/havacılık uygulamaları ile nükleer santrallerde kullanılabilecek yapı malzemelerinin geliştirilmesine ışık tutmaktadır.

Supporting Institution

Scientific Research Projects Unit of Turkish-German University / Türk-Alman Üniversitesi BAP Birimi

Project Number

2019BF0004

Thanks

The author gratefully acknowledges the financial support of the Scientific Research Projects Unit of Turkish-German University. / Yazar, finansal destek için Türk-Alman Üniversitesi BAP Birimi’ne teşekkürlerine sunar.

References

  • Lei, Q., Li, Z., Xiao, T., Pang, Y., Xiang, Z.Q., Qiu, W.T., & Xiao, Z. (2013a). A new ultrahigh strength Cu–Ni–Si alloy. Intermetallics, 42, 77–84. https://doi.org/10.1016/j.intermet.2013.05.013
  • Lockyer, S.A., & Noble, F.W. (1994). Precipitate structure in a Cu-Ni-Si alloy. J. Mater. Sci., 29, 218–226. https://doi.org/10.1007/BF00356596
  • Monzen, R., & Watanabe, C. (2008). Microstructure and mechanical properties of Cu-Ni-Si alloys. Mater. Sci. Eng. A, 483-484, 117–119. https://doi.org/10.1016/j.msea.2006.12.163
  • Woodcraft, A., Sudiwala, R., & Bhatia, R. (2001). The thermal conductivity of C17510 beryllium-copper alloy below 1 K. Cryogenics, 41, 603–606. https://doi.org/10.1016/S0011-2275(01)00127-8
  • Xie, H., Jia, L., & Lu, Z. (2009). Microstructure and solidification behavior of Cu-Ni-Si alloys. Materials Characterization, 60, 114–118. https://doi.org/10.1016/j.matchar.2008.07.008
  • Xiao, T., Sheng, X.-F., Lei, Q., Zhu, J.-L., Li, S.Y., Liu, Z.R., & Zhou, L. (2020). Effect of Magnesium on Microstructure Refinements and Properties Enhancements in High-Strength CuNiSi Alloys. Acta Metall. Sin., 33, (2020) 375–384. https://doi.org/10.1007/s40195-019-00953-9
  • Lei, Q., Li, Z., Dai, C., Wang, J., Chen, X., Xie, J.M., Yang, W.W., & Chen, D.L. (2013b). Effect of aluminum on microstructure and property of Cu–Ni–Si alloys, Mater. Sci. Eng. A, 572, 65–74. https://doi.org/10.1016/j.msea.2013.02.024
  • Zhao, D., Dong, Q.M., Liu, P., Kang, B.X., Huang, J.L., & Jin, Z.H. (2003). Aging behavior of Cu-Ni-Si alloy. Mater. Sci. Eng. A, 361, 93–99. https://doi.org/10.1016/S0921-5093(03)00496-9
  • Watanabe, H., Kunimine, T., Watanabe, C., Monzen, R., & Todaka, Y. (2018). Tensile deformation characteristics of a Cu-Ni-Si alloy containing trace elements processed by high-pressure torsion with subsequent aging. Mater. Sci. Eng. A, 730, 10–15. https://doi.org/10.1016/j.msea.2018.05.090
  • Li, Z., Pan, Z.Y., Zhao, Y.Y., Xiao, Z., & Wang, M.P. (2009). Microstructure and properties of high-conductivity, super-high-strength Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy. J. Mater. Res., 24, 2123–2129. https://doi.org/10.1557/jmr.2009.0251
  • Krishna, S.C., Srinath, J., Jha, A.K., Pant, B., Sharma, S.C., & George, K.M. (2013). Microstructure and properties of a high-strength Cu-Ni-Si-Co-Zr alloy. J. Mater. Eng. Perform., 22, 2115–2120. https://doi.org/10.1007/s11665-013-0482-6
  • Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., & Lowe, T.C. (2002). Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation. J. Mater. Res., 17, 5–8. https://doi.org/10.1557/jmr.2002.0002
  • Valiev, R.Z., & Langdon, T.G. (2006). Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science, 51, 881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003
  • Furukawa, M., Horita, Z., Nemoto, M., & Langdon, T.G. (2001). Processing of metals by equal-channel angular pressing. J. Mater. Sci., 36, 2835–2843. https://doi.org/10.1023/A:1017932417043
  • Furuno, K., Akamatsu, H., Oh-ishi, K., Furukawa, M., Horita, Z., & Langdon, T.G. (2004). Microstructural development in equal-channel angular pressing using a 60° die. Acta Mater., 52, 2497–2507. https://doi.org/10.1016/j.actamat.2004.01.040
  • Khereddine, A.Y., Larbi, F.H., Kawasaki, M., Baudin, T., Bradai, D., & Langdon, T.G. (2013). An examination of microstructural evolution in a Cu–Ni–Si alloy processed by HPT and ECAP. Materials Science and Engineering A, 576, 149–155. https://doi.org/10.1016/j.msea.2013.04.004
  • Xiao, X.P., Yi, Z.Y., Chen, T.T., Liu, R.Q., & Wang, H. (2016). Suppressing spinodal decomposition by adding Co into Cu–Ni–Si alloy. Journal of Alloys and Compounds, 660, 178–183. https://doi.org/10.1016/j.jallcom.2015.11.103
  • Kim, H.G., Lee, T.W., Kim, S.M., Han, S.Z., Euh, K., Kim, W.Y., & Lim, S.H. (2013). Effects of Ti Addition and Heat Treatments on Mechanical and Electrical Properties of Cu-Ni-Si Alloys. Met. Mater. Int., 19, 61–65. https://doi.org/10.1007/s12540-013-1011-8
  • Cheng, J.Y., Tang, B.B., Yu, F.X., & Shen, B. (2014). Evaluation of nanoscaled precipitates in a Cu–Ni–Si–Cr alloy during aging. Journal of Alloys and Compounds, 614, 189–195. https://doi.org/10.1016/j.jallcom.2014.06.089
  • Watanabe, C., Nishijima, F., Monzen, R., & Tazaki, K. (2007). Mechanical Properties of Cu-4.0wt%Ni-0.95wt%Si Alloys with and without P and Cr Addition. Materials Science Forum, 561-565, 2321–2324. https://doi.org/10.4028/www.scientific.net/MSF.561-565.2321
  • Lei, Q., Xiao, Z., Hu, W., Derby, B., & Li, Z. (2017). Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy. Mater. Sci. Eng. A, 697, 37–47. https://doi.org/10.1016/j.msea.2017.05.001
  • Ahn, J.H., Han, S.Z., Choi, E.-A., Lee, H., Lim, S.H., Lee, J., Kim, K., Hwang, N.M., & Han, H.N. (2020). The effect of bimodal structure with nanofibers and normal precipitates on the mechanical and electrical properties of Cu-Ni-Si alloy. Materials Characterization, 170, 110642. https://doi.org/10.1016/j.matchar.2020.110642
  • Arenas, C., Henriquez, R., Moraga, L., Munoz, E., & Muno, R.C. (2015). The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures. Applied Surface Science, 329, 184–196. https://doi.org/10.1016/j.apsusc.2014.12.045
  • Petch, N.J. (1953). The Cleavage Strengh of Polycrystals. The Journal of the Iron and Steel Institute, 174, 25–28.
  • Frint, P., & Wagner, M.F.-X. (2019). Strain partitioning by recurrent shear localization during equal-channel angular pressing of an AA6060 aluminum alloy. Acta Mater., 176, 306–317. https://doi.org/10.1016/j.actamat.2019.07.009
  • Ma, A., Jiang, J., Saito, N., Shigematsu, I., Yuan, Y., Yang, D., & Nishida, Y. (2009). Improving both strength and ductility of a Mg alloy through a large number of ECAP passes. Mater. Sci. Eng. A, 513-514, 122–127. https://doi.org/10.1016/j.msea.2009.01.040

Effect of Severe Plastic Deformation on the Mechanical and Electrical Properties of Cr-modified Cu-Ni-Si Alloys

Year 2021, , 866 - 872, 30.11.2021
https://doi.org/10.31590/ejosat.1004910

Abstract

Copper alloys are widely used in automotive, electronics, petrochemical and nuclear applications due to their good mechanical/ corrosion resistance and conductivity. Although mostly beryllium containing copper alloys are utilized in these industries due to their superior properties. However, due to the toxic effects of beryllium, there is a need for alternative copper alloys. Among the alternative alloys, Cu-Ni-Si alloys known as Corson alloys are commonly preferred. Both alloying and thermomechanical treatments play important roles to attain similar or better properties in this alloy system, compared to the beryllium containing Cu alloys. In this research, a combined thermomechanical treatment is performed in order to characterize the effect of severe plastic deformation and subsequent heat treatments (i.e., precipitation hardening) on strength, hardness and electrical conductivity of Corson alloys modified by Chromium. The copper alloys having different chemical compositions (Cr contents) are processed using equal-channel angular pressing (ECAP) after solution annealing and quenching. The behavior of Cr-modified alloys is characterized in detail and the effect of the combined thermomechanical treatment and of the Cr content on the final mechanical and physical behavior is discussed. The results show that during aging of solution treated alloys containing 0.4, 0.6 and 0.8 wt-% Cr, a significant increase in both hardness and electrical conductivity is observed, and that increasing Cr content also leads to an increase of both properties. After processing by two-pass ECAP, the hardness of all investigated alloys is significantly increased compared with the solution treated state, whereas the electrical conductivity is adversely affected by severe plastic deformation. The mechanical behavior of the ECAPed alloys can be enhanced even further by performing post-ECAP aging. Therefore, it allows us to develop Cu-Ni-Si alloys by severe plastic deformation process, as an alternative to commonly used beryllium containing copper alloys. The preliminary results provide new insights for the development of construction materials that can be used in the electronic industry, high-speed rail systems, aerospace applications and nuclear power plants, which are recently high priority topics.

Project Number

2019BF0004

References

  • Lei, Q., Li, Z., Xiao, T., Pang, Y., Xiang, Z.Q., Qiu, W.T., & Xiao, Z. (2013a). A new ultrahigh strength Cu–Ni–Si alloy. Intermetallics, 42, 77–84. https://doi.org/10.1016/j.intermet.2013.05.013
  • Lockyer, S.A., & Noble, F.W. (1994). Precipitate structure in a Cu-Ni-Si alloy. J. Mater. Sci., 29, 218–226. https://doi.org/10.1007/BF00356596
  • Monzen, R., & Watanabe, C. (2008). Microstructure and mechanical properties of Cu-Ni-Si alloys. Mater. Sci. Eng. A, 483-484, 117–119. https://doi.org/10.1016/j.msea.2006.12.163
  • Woodcraft, A., Sudiwala, R., & Bhatia, R. (2001). The thermal conductivity of C17510 beryllium-copper alloy below 1 K. Cryogenics, 41, 603–606. https://doi.org/10.1016/S0011-2275(01)00127-8
  • Xie, H., Jia, L., & Lu, Z. (2009). Microstructure and solidification behavior of Cu-Ni-Si alloys. Materials Characterization, 60, 114–118. https://doi.org/10.1016/j.matchar.2008.07.008
  • Xiao, T., Sheng, X.-F., Lei, Q., Zhu, J.-L., Li, S.Y., Liu, Z.R., & Zhou, L. (2020). Effect of Magnesium on Microstructure Refinements and Properties Enhancements in High-Strength CuNiSi Alloys. Acta Metall. Sin., 33, (2020) 375–384. https://doi.org/10.1007/s40195-019-00953-9
  • Lei, Q., Li, Z., Dai, C., Wang, J., Chen, X., Xie, J.M., Yang, W.W., & Chen, D.L. (2013b). Effect of aluminum on microstructure and property of Cu–Ni–Si alloys, Mater. Sci. Eng. A, 572, 65–74. https://doi.org/10.1016/j.msea.2013.02.024
  • Zhao, D., Dong, Q.M., Liu, P., Kang, B.X., Huang, J.L., & Jin, Z.H. (2003). Aging behavior of Cu-Ni-Si alloy. Mater. Sci. Eng. A, 361, 93–99. https://doi.org/10.1016/S0921-5093(03)00496-9
  • Watanabe, H., Kunimine, T., Watanabe, C., Monzen, R., & Todaka, Y. (2018). Tensile deformation characteristics of a Cu-Ni-Si alloy containing trace elements processed by high-pressure torsion with subsequent aging. Mater. Sci. Eng. A, 730, 10–15. https://doi.org/10.1016/j.msea.2018.05.090
  • Li, Z., Pan, Z.Y., Zhao, Y.Y., Xiao, Z., & Wang, M.P. (2009). Microstructure and properties of high-conductivity, super-high-strength Cu-8.0Ni-1.8Si-0.6Sn-0.15Mg alloy. J. Mater. Res., 24, 2123–2129. https://doi.org/10.1557/jmr.2009.0251
  • Krishna, S.C., Srinath, J., Jha, A.K., Pant, B., Sharma, S.C., & George, K.M. (2013). Microstructure and properties of a high-strength Cu-Ni-Si-Co-Zr alloy. J. Mater. Eng. Perform., 22, 2115–2120. https://doi.org/10.1007/s11665-013-0482-6
  • Valiev, R.Z., Alexandrov, I.V., Zhu, Y.T., & Lowe, T.C. (2002). Paradox of Strength and Ductility in Metals Processed by Severe Plastic Deformation. J. Mater. Res., 17, 5–8. https://doi.org/10.1557/jmr.2002.0002
  • Valiev, R.Z., & Langdon, T.G. (2006). Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress in Materials Science, 51, 881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003
  • Furukawa, M., Horita, Z., Nemoto, M., & Langdon, T.G. (2001). Processing of metals by equal-channel angular pressing. J. Mater. Sci., 36, 2835–2843. https://doi.org/10.1023/A:1017932417043
  • Furuno, K., Akamatsu, H., Oh-ishi, K., Furukawa, M., Horita, Z., & Langdon, T.G. (2004). Microstructural development in equal-channel angular pressing using a 60° die. Acta Mater., 52, 2497–2507. https://doi.org/10.1016/j.actamat.2004.01.040
  • Khereddine, A.Y., Larbi, F.H., Kawasaki, M., Baudin, T., Bradai, D., & Langdon, T.G. (2013). An examination of microstructural evolution in a Cu–Ni–Si alloy processed by HPT and ECAP. Materials Science and Engineering A, 576, 149–155. https://doi.org/10.1016/j.msea.2013.04.004
  • Xiao, X.P., Yi, Z.Y., Chen, T.T., Liu, R.Q., & Wang, H. (2016). Suppressing spinodal decomposition by adding Co into Cu–Ni–Si alloy. Journal of Alloys and Compounds, 660, 178–183. https://doi.org/10.1016/j.jallcom.2015.11.103
  • Kim, H.G., Lee, T.W., Kim, S.M., Han, S.Z., Euh, K., Kim, W.Y., & Lim, S.H. (2013). Effects of Ti Addition and Heat Treatments on Mechanical and Electrical Properties of Cu-Ni-Si Alloys. Met. Mater. Int., 19, 61–65. https://doi.org/10.1007/s12540-013-1011-8
  • Cheng, J.Y., Tang, B.B., Yu, F.X., & Shen, B. (2014). Evaluation of nanoscaled precipitates in a Cu–Ni–Si–Cr alloy during aging. Journal of Alloys and Compounds, 614, 189–195. https://doi.org/10.1016/j.jallcom.2014.06.089
  • Watanabe, C., Nishijima, F., Monzen, R., & Tazaki, K. (2007). Mechanical Properties of Cu-4.0wt%Ni-0.95wt%Si Alloys with and without P and Cr Addition. Materials Science Forum, 561-565, 2321–2324. https://doi.org/10.4028/www.scientific.net/MSF.561-565.2321
  • Lei, Q., Xiao, Z., Hu, W., Derby, B., & Li, Z. (2017). Phase transformation behaviors and properties of a high strength Cu-Ni-Si alloy. Mater. Sci. Eng. A, 697, 37–47. https://doi.org/10.1016/j.msea.2017.05.001
  • Ahn, J.H., Han, S.Z., Choi, E.-A., Lee, H., Lim, S.H., Lee, J., Kim, K., Hwang, N.M., & Han, H.N. (2020). The effect of bimodal structure with nanofibers and normal precipitates on the mechanical and electrical properties of Cu-Ni-Si alloy. Materials Characterization, 170, 110642. https://doi.org/10.1016/j.matchar.2020.110642
  • Arenas, C., Henriquez, R., Moraga, L., Munoz, E., & Muno, R.C. (2015). The effect of electron scattering from disordered grain boundaries on the resistivity of metallic nanostructures. Applied Surface Science, 329, 184–196. https://doi.org/10.1016/j.apsusc.2014.12.045
  • Petch, N.J. (1953). The Cleavage Strengh of Polycrystals. The Journal of the Iron and Steel Institute, 174, 25–28.
  • Frint, P., & Wagner, M.F.-X. (2019). Strain partitioning by recurrent shear localization during equal-channel angular pressing of an AA6060 aluminum alloy. Acta Mater., 176, 306–317. https://doi.org/10.1016/j.actamat.2019.07.009
  • Ma, A., Jiang, J., Saito, N., Shigematsu, I., Yuan, Y., Yang, D., & Nishida, Y. (2009). Improving both strength and ductility of a Mg alloy through a large number of ECAP passes. Mater. Sci. Eng. A, 513-514, 122–127. https://doi.org/10.1016/j.msea.2009.01.040
There are 26 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Çağatay Elibol 0000-0002-3595-5259

Project Number 2019BF0004
Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Elibol, Ç. (2021). Effect of Severe Plastic Deformation on the Mechanical and Electrical Properties of Cr-modified Cu-Ni-Si Alloys. Avrupa Bilim Ve Teknoloji Dergisi(27), 866-872. https://doi.org/10.31590/ejosat.1004910