Research Article
BibTex RIS Cite

Hiperbolik Değerli Dislocated Metrik Uzaylar

Year 2021, , 1152 - 1158, 30.11.2021
https://doi.org/10.31590/ejosat.1013323

Abstract

Bu çalışmada, hiperbolik değerli dislocated metrik uzay kavramını sunduk ve Banach, Kannan ve Chatterjea tip daralmaları kullanarak böyle uzayların kendileri üzerinde tanımlı dönüşümler için bir sabit noktanın var ve tek olduğunu gösterdik. Ayrıca ana sonucumuzun uygulanabilirliğini ve kullanışlılığını ispatlamak için açıklayıcı bir örnek verdik.

References

  • Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math., 3(1), 133-181.
  • Chatterjea, S. K. (1972). Fixed-point theorems. C. R. Acad. Bulgare Sci., 25, 727-730.
  • Gaba H. & Garg A. K. (2019). Some fixed point results for contraction in dislocated metric space. International Journal on Emerging Technologies, 10(2b), 147-150.
  • Hitzler, P., & Seda, A. K. (2000). Dislocated topologies. J. Electr. Eng., 51(12), 3-7.
  • Kannan, R. (1968). Some results on fixed points. Bull. Cal. Math. Soc., 60, 71-76.
  • Kumar, R., & Saini, H. (2016). Topological bicomplex modules. Advances in Applied Clifford Algebras, 26(4), 1249-1270.
  • Luna-Elizarrarás, M. E., Shapiro, M., Struppa, D. C., & Vajiac, A. (2015). Bicomplex holomorphic functions: the algebra, geometry and analysis of bicomplex numbers. Birkhäuser.
  • Pasicki, L. (2015). Dislocated metric and fixed point theorems. Fixed Point Theory and Applications, 2015(1), 1-14.
  • Price, G. B. (1991). An introduction to multicomplex spaces and functions. M. Dekker.
  • Rahman, M. U., & Sarwar, M. (2015). Fixed point theorems for expanding mappings in dislocated metric space. Mathematical Sciences Letters, 4(1), 69-73.
  • Sager, N., & Sağır, B. (2021). Fixed points of hyperbolic contraction mappings on hyperbolic valued metric spaces. Sarajevo Journal of Mathematics, 17(2). (in print)
  • Sager, N., & Sağır, B. (2021). Common fixed, coupled coincidence and common coupled fixed point results in hyperbolic valued metric spaces. Boletim da Sociedade Paranaense de Matemática. (accepted for publication)
  • Wadkar, B. R., Bhardwaj, R., & Singh, B. (2017). Some fixed point theorems in dislocated metric space. Global Journal of Pure and Applied Mathematics, 13(6), 2089-2110.
  • Zeyada, F. M., Hassan, G. H., & Ahmed, M. A. (2006). A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces. Arabian Journal for Science and Engineering, 31(1A), 111-114.

Hyperbolic Valued Dislocated Metric Spaces

Year 2021, , 1152 - 1158, 30.11.2021
https://doi.org/10.31590/ejosat.1013323

Abstract

In this work, we introduce the concept of a hyperbolic valued dislocated metric space, and we show that a fixed point of self-mappings in such spaces is exist and unique by using Banach, Kannan and Chatterjea type contractions. Furthermore, we discuss an illustrative example to substantiate the applicability and usefulness of our main result.

References

  • Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math., 3(1), 133-181.
  • Chatterjea, S. K. (1972). Fixed-point theorems. C. R. Acad. Bulgare Sci., 25, 727-730.
  • Gaba H. & Garg A. K. (2019). Some fixed point results for contraction in dislocated metric space. International Journal on Emerging Technologies, 10(2b), 147-150.
  • Hitzler, P., & Seda, A. K. (2000). Dislocated topologies. J. Electr. Eng., 51(12), 3-7.
  • Kannan, R. (1968). Some results on fixed points. Bull. Cal. Math. Soc., 60, 71-76.
  • Kumar, R., & Saini, H. (2016). Topological bicomplex modules. Advances in Applied Clifford Algebras, 26(4), 1249-1270.
  • Luna-Elizarrarás, M. E., Shapiro, M., Struppa, D. C., & Vajiac, A. (2015). Bicomplex holomorphic functions: the algebra, geometry and analysis of bicomplex numbers. Birkhäuser.
  • Pasicki, L. (2015). Dislocated metric and fixed point theorems. Fixed Point Theory and Applications, 2015(1), 1-14.
  • Price, G. B. (1991). An introduction to multicomplex spaces and functions. M. Dekker.
  • Rahman, M. U., & Sarwar, M. (2015). Fixed point theorems for expanding mappings in dislocated metric space. Mathematical Sciences Letters, 4(1), 69-73.
  • Sager, N., & Sağır, B. (2021). Fixed points of hyperbolic contraction mappings on hyperbolic valued metric spaces. Sarajevo Journal of Mathematics, 17(2). (in print)
  • Sager, N., & Sağır, B. (2021). Common fixed, coupled coincidence and common coupled fixed point results in hyperbolic valued metric spaces. Boletim da Sociedade Paranaense de Matemática. (accepted for publication)
  • Wadkar, B. R., Bhardwaj, R., & Singh, B. (2017). Some fixed point theorems in dislocated metric space. Global Journal of Pure and Applied Mathematics, 13(6), 2089-2110.
  • Zeyada, F. M., Hassan, G. H., & Ahmed, M. A. (2006). A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces. Arabian Journal for Science and Engineering, 31(1A), 111-114.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Nilay Değirmen 0000-0001-8192-8473

Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Değirmen, N. (2021). Hyperbolic Valued Dislocated Metric Spaces. Avrupa Bilim Ve Teknoloji Dergisi(28), 1152-1158. https://doi.org/10.31590/ejosat.1013323