Research Article
BibTex RIS Cite

Hareketli bir yüke maruz kalan keyfi kavisli bir kirişin tepkisi için kesin çözüm

Year 2021, , 414 - 423, 31.12.2021
https://doi.org/10.31590/ejosat.1048496

Abstract

Rastgele bir düzlem eğimli kirişin hareketli bir yüke tepkisi analitik olarak incelenmiştir. Kiriş kesiti belirli bir simetriye sahip olacak şekilde sınırlandırılmıştır, böylece kiriş hareket eden kuvvetin etkisi altındayken düzleminde kalır. Hareket eden kuvvetin, yönü daima kirişin kavisli şeklinin ana normalini işaret ederken, kirişin uzunluğu boyunca sabit hızla kayan tekil bir kuvvet olduğu varsayılır. Genel denklemler herhangi bir düzlem eğrisi için verilmiş ve özel bir örnek için kuvvet serileri yöntemi kullanılarak çözülmüştür.

References

  • Love, A.E.H. (1944). A Treatise on the mathematical theory of elasticity.
  • Wu, J.S., Chiang, L.K. (2004). Dynamic analysis of an arch due to a moving load. J. Sound Vib. 269, 511–534.
  • Gulyayev, V.I., Tolbatov, E.Y. (2004). Dynamics of spiral tubes containing internal moving masses of boiling liquid. J. Sound Vib. 274, 233–248.
  • Wayou, A.N.Y., Tchoukuegno, R., Woafo, P. (2004). Non-linear dynamics of an elastic beam under moving loads. J. Sound Vib. 273, 1101–1108.
  • Forbes, G.L., Randall, R.B. (2008). Resonance phenomena of an elastic ring under a moving load. J. Sound Vib. 318, 991–1004.
  • Huang, J.L., Su, R.K.L., Lee, Y.Y., Chen, S.H. (2011). Nonlinear vibration of a curved beam under uniform base harmonic excitation with quadratic and cubic nonlinearities. J. Sound Vib. 330, 5151–5164.
  • Tufekci, E., Dogruer, O.Y. (2006). Out-of-plane free vibration of a circular arch with uniform cross-section: Exact solution. J. Sound Vib. 291, 525–538.
  • Yang, F., Sedaghati, R., Esmailzadeh, E. (2008). Free in-plane vibration of general curved beams using finite element method. J. Sound Vib. 318, 850–867.
  • Ozturk, H. (2011). In-plane free vibration of a pre-stressed curved beam obtained from a large deflected cantilever beam. Finite Elem. Anal. Des. 47, 229–236.
  • Tolomeo, J.A. (2005). Bending of a simple beam to an optically accurate parabolic shape. Int. J. Solids Struct. 42, 1819–1830.
  • Lin, K.C., Hsieh, C.M. (2007). The closed form general solutions of 2-D curved laminated beams of variable curvatures. Compos. Struct. 79, 606–618.
  • Piovan, M.T., Cortinez, V.H. (2007). Mechanics of thin-walled curved beams made of composite materials, allowing for shear deformability. Thin Wall. Struct. 45, 759–789.
  • Wang, M., Liu, Y. (2013). Elasticity solutions for orthotropic functionally graded curved beams. Eur. J. Mech. A Solids 37, 8–16.
  • Lenci, S., Clementi, F. (2009). Simple mechanical model of curved beams by a 3D approach. J. Eng. Mech. 135(7), 597–613.
  • Lim, C.W. Wang, C.M., Kitipornchai, S. (1997). Timoshenko curved beam bending of Euler-Bernoulli solutions. Arch. Appl. Mech. 67, 179–190.
  • Luu, A.T., Kim, N.I., Lee, J. (2015). NURBS - based isogeometric vibration analysis of generally laminated deep curved beams with variable curvature. Compos. Struct. 119, 150–165.
  • Tseng, Y.P., Huang, C.S., Kao, M.S. (2000). In-plane vibration of laminated curved beams with variable curvature by dynamic stiffness analysis. Compos. Struct. 50, 103–114.
  • Krishnan, A., Suresh, Y.J. (1998). A simple cubic linear element for static and free vibration analyses of curved beams. Comput. Struct. 68, 473–489.
  • Kim, N.l., Seo, K.J., Kim, M.Y. (2003). Free vibration and spatial stability of non-symmetric thin-walled curved beams with variable curvatures. Int. J. Solids Struct. 40, 3107–3128.
  • Lee, B.K., Oh, S.J., Mo, J.M., Lee, T.E. (2008). Out-of-plane free vibrations of curved beams with variable curvature. J. Sound Vib. 318, 227–246.
  • Huang, C.S., Tseng, Y.P., Chang, S.H., Hung, C.L. (2000). Out-of-plane dynamic analysis of beams with arbitrarily varying curvature and cross-section by dynamic stiffness matrix method. Int. J. Solids Struct. 37, 495–513.
  • Huang, C.S., Tseng, Y.P., Leissa, A.W., Nieh, K.Y. (1998). An exact solution for in-plane vibrations of an arch having variable curvature and cross section. Int. J. Mech. Sci. 40(11), 1159–1173.
  • Sakman, L.E., Uzal, E. (2017). Exact solution for the vibrations of an arbitrary plane curved pipe conveying fluid. ZAMM-Z Angew Math Me. 97(4), 422-432.

Exact solution for the response of an arbitrarily-curved beam subject to a moving load

Year 2021, , 414 - 423, 31.12.2021
https://doi.org/10.31590/ejosat.1048496

Abstract

An arbitrarily curved beam under the effect of a moving load has been considered. An analytical series solution has been developed for the case when the beam cross-section is symmetrical so that it resides in a plane during the motion. The moving force is assumed to be a singular force sliding through the length of the beam with constant speed while its direction always pointing in the principal normal of the curved shape of the beam. After developing the general solution for any plane beam, example computations were carried out on a specific example by means of power series expansion.

References

  • Love, A.E.H. (1944). A Treatise on the mathematical theory of elasticity.
  • Wu, J.S., Chiang, L.K. (2004). Dynamic analysis of an arch due to a moving load. J. Sound Vib. 269, 511–534.
  • Gulyayev, V.I., Tolbatov, E.Y. (2004). Dynamics of spiral tubes containing internal moving masses of boiling liquid. J. Sound Vib. 274, 233–248.
  • Wayou, A.N.Y., Tchoukuegno, R., Woafo, P. (2004). Non-linear dynamics of an elastic beam under moving loads. J. Sound Vib. 273, 1101–1108.
  • Forbes, G.L., Randall, R.B. (2008). Resonance phenomena of an elastic ring under a moving load. J. Sound Vib. 318, 991–1004.
  • Huang, J.L., Su, R.K.L., Lee, Y.Y., Chen, S.H. (2011). Nonlinear vibration of a curved beam under uniform base harmonic excitation with quadratic and cubic nonlinearities. J. Sound Vib. 330, 5151–5164.
  • Tufekci, E., Dogruer, O.Y. (2006). Out-of-plane free vibration of a circular arch with uniform cross-section: Exact solution. J. Sound Vib. 291, 525–538.
  • Yang, F., Sedaghati, R., Esmailzadeh, E. (2008). Free in-plane vibration of general curved beams using finite element method. J. Sound Vib. 318, 850–867.
  • Ozturk, H. (2011). In-plane free vibration of a pre-stressed curved beam obtained from a large deflected cantilever beam. Finite Elem. Anal. Des. 47, 229–236.
  • Tolomeo, J.A. (2005). Bending of a simple beam to an optically accurate parabolic shape. Int. J. Solids Struct. 42, 1819–1830.
  • Lin, K.C., Hsieh, C.M. (2007). The closed form general solutions of 2-D curved laminated beams of variable curvatures. Compos. Struct. 79, 606–618.
  • Piovan, M.T., Cortinez, V.H. (2007). Mechanics of thin-walled curved beams made of composite materials, allowing for shear deformability. Thin Wall. Struct. 45, 759–789.
  • Wang, M., Liu, Y. (2013). Elasticity solutions for orthotropic functionally graded curved beams. Eur. J. Mech. A Solids 37, 8–16.
  • Lenci, S., Clementi, F. (2009). Simple mechanical model of curved beams by a 3D approach. J. Eng. Mech. 135(7), 597–613.
  • Lim, C.W. Wang, C.M., Kitipornchai, S. (1997). Timoshenko curved beam bending of Euler-Bernoulli solutions. Arch. Appl. Mech. 67, 179–190.
  • Luu, A.T., Kim, N.I., Lee, J. (2015). NURBS - based isogeometric vibration analysis of generally laminated deep curved beams with variable curvature. Compos. Struct. 119, 150–165.
  • Tseng, Y.P., Huang, C.S., Kao, M.S. (2000). In-plane vibration of laminated curved beams with variable curvature by dynamic stiffness analysis. Compos. Struct. 50, 103–114.
  • Krishnan, A., Suresh, Y.J. (1998). A simple cubic linear element for static and free vibration analyses of curved beams. Comput. Struct. 68, 473–489.
  • Kim, N.l., Seo, K.J., Kim, M.Y. (2003). Free vibration and spatial stability of non-symmetric thin-walled curved beams with variable curvatures. Int. J. Solids Struct. 40, 3107–3128.
  • Lee, B.K., Oh, S.J., Mo, J.M., Lee, T.E. (2008). Out-of-plane free vibrations of curved beams with variable curvature. J. Sound Vib. 318, 227–246.
  • Huang, C.S., Tseng, Y.P., Chang, S.H., Hung, C.L. (2000). Out-of-plane dynamic analysis of beams with arbitrarily varying curvature and cross-section by dynamic stiffness matrix method. Int. J. Solids Struct. 37, 495–513.
  • Huang, C.S., Tseng, Y.P., Leissa, A.W., Nieh, K.Y. (1998). An exact solution for in-plane vibrations of an arch having variable curvature and cross section. Int. J. Mech. Sci. 40(11), 1159–1173.
  • Sakman, L.E., Uzal, E. (2017). Exact solution for the vibrations of an arbitrary plane curved pipe conveying fluid. ZAMM-Z Angew Math Me. 97(4), 422-432.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Lütfi Emir Sakman 0000-0002-9599-8875

Publication Date December 31, 2021
Published in Issue Year 2021

Cite

APA Sakman, L. E. (2021). Exact solution for the response of an arbitrarily-curved beam subject to a moving load. Avrupa Bilim Ve Teknoloji Dergisi(32), 414-423. https://doi.org/10.31590/ejosat.1048496