Research Article
BibTex RIS Cite

Farklı Gölgelenen Kanallar Üzerinden Enerji-Verimli Veri İletimi için Geçmiş-temelli Su-Doldurma Algoritması

Year 2022, , 118 - 125, 30.11.2022
https://doi.org/10.31590/ejosat.1112389

Abstract

Bu çalışmada, kablosuz ağlarda çoklu gölgelenen kanallar üzerinden bir radio kaynak tahsisi problem ele alınmaktadır. Bu problem iki yönlü incelenmektedir. İlk olarak, problemi tüm gölgelenen kanalları düşünerek ele alınmaktadır. Çevrimdışı su-doldurma algoritmasını düşünerek bu problemin en iyi çözümünü sunulmuştur. Daha sonra bu probleme geçmiş-temelli çevrimiçi su doldurma algoritmaları önerilmiştir. Bu çevrimiçi algoritma, geçmişin bir kısmına bağlı bir su-doldurma seviyesine karar vermek amacıyla geçmişi kısmı olarak kullanmaktadır. Daha sonra, bu çevrimiçi algoritma problemin zaman ufkunda veri iletmek için bu geçmiş-temelli su-doldurma seviyesini uygulamaktadır. Çevrimiçi ve çevrimdışı politikaların göreli performansı, çeşitli tiplerde (Rayleigh, Rician, Nakagami, Weibull) gölgelenen kanallar için çeşitli zaman ufuklarında değerlendirilmektedir. Sayısal sonuçlar, özellikle daha uzun zaman ufukları için ve daha uzun geçmişin daha uzun kısımlarını kullanıldığında, bu çevrimiçi su doldurma algoritmalarının çevrimdışı su doldurma algoritmalarına yakın performansı olduğunu göstermektedir.

References

  • Ajitsinh. N., Jadhav and Sakib. R. Mujawar. (2017). Different power loading allocation schemes for ofdm based cognitive radio system. International Journal of Latest Trends in Engineering and Technology, 8 (1), 350-359.
  • Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
  • Cover, T. and Thomas, J. (2006). Elements of Information Theory, 2nd Edition. Wiley&Sons.
  • Dai, M., Zhang S., Chen, B., Lin, X., &Wang, H. (2014). A refined convergence condition for iterative waterfilling algorithm. IEEE Communications Letters, 18(2), 269-272.
  • Elgarhy O. and Reggiani L., "Application of the Water Filling Algorithm to the Sum Rate Problem with Minimum Rate and Power Constraint," 2018 Advances in Wireless and Optical Communications (RTUWO), 2018, pp. 12-16.
  • Gai, Y.& Krishnamachari, B. (2012). Online Learning Algorithms for Stochastic Water-Filling. IEEE Information Theory and Applications Workshop (ITA), 1-6.
  • Goldsmith, A. (2005). Wireless Communications. Cambridge University Press.
  • Goldsmith, A., &Varaiya, P. P. (1996). Capacity, mutual information, and coding for finite-state Markov channels. IEEE Transactions on Information Theory, 42 (3), 868-886.
  • Gurdasani H., Ananth, A. G., Thangadurai N. (2021). Channel Capacity Enhancement of MIMO System using Water-Filling Algorithm. Turkish Journal of Computer and Mathematics Education.12 (12), 192-201.
  • Kim Y.; Kang M.; Varshney L. R.; Shanbhag N. R., (2018). Generalized Water-Filling for Source-Aware Energy-Efficient SRAMs. IEEE Transactions on Communications, 66 (10), 4826-4841.
  • Nazir, M., Sabah, A., Sarwar, S. et al. (2021). Power and Resource Allocation in Wireless Communication Network. Wireless Pers Commun 119, 3529-3552.
  • Noor Shahida M. K, Nordin R. and Ismail. M. (2017). Improved Water-Filling Power Allocation for Energy-Efficient Massive MIMO Downlink Transmissions. Intl Journal of Electronics& Telecommunications, vol. 63, no. 1, 79-84.
  • P. He, L. Zhao, S. Zhou, Z. Niu, (2013). Water-Filling: A Geometric Approach and its Application to Solve Generalized Radio Resource Allocation Problems. IEEE Transactions on Wireless Communications, 12 (7), 3637-3647.
  • Qi Q, Minturn A., and Yang Y. L. (2012). An Efficient Water-Filling Algorithm for Power Allocation in OFDM-Based Cognitive Radio Systems. 2012 International Conference on Systems and Informatics, 2069-2073.
  • Qian L. P., Zhang Y. J., and Huang J. (2009). MAPEL: Achieving global optimality for a non-convex wireless power control problem,” IEEE Trans. on Wireless Communications, vol. 8, no. 3, 1553-1563.
  • Qualcomm. Everything you need to know about 5G. Available at https://www.qualcomm.com/5g/what-is-5g (Accessed on 3 October 2022.)
  • Tse, D. & Viswanath, P. (2005). Fundamentals of Wirelss Communication. Cambridge University Press.
  • Teletar, E. (1995). Capacity of multi-antenna Gaussian channels. AT&T Bell Labs Internal Tech. Memo.
  • Xing, C., Jing, Y., Wang, S., Ma, S. & Poor, H. V. (2020). New Viewpoint and Algorithms for Water-Filling Solutions in Wireless Communications. in IEEE Transactions on Signal Processing, 68, 1618-1634.
  • Wael C. B. A, Armi N., Miftahushudur M. T., Muliawarda D., and Sugandi G. (2017). Power Allocation in OFDM-Based Cognitive Radio Networks for Fading Channel. in 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET).
  • Wei S., Zheng Z. and Wu, C. (2021). Channel Power Allocation Optimization Based on Water-filling Algorithm in 5G. J. Phys.: Conf. Ser. 1871 012082.
  • Yang, J. and Roy, S. (1994). On joint transmitter and receiver optimization for multiple-input-multiple-output (MIMO) transmission systems. IEEE Transactions on Communications, 42(12), 3221-3231.
  • Yu S., Daoxing G., Lu L., and Xiaopei D., (2016). A modified water-filling algorithm of power allocation. in IEEE Information Technology, Networking, Electronic & Automation Control Conference, 1125-1129.
  • Zeng M., Nguyen N. P., Dobre O. A., Ding Z., and Poor H. V. (2019). Spectral- and Energy-Efficient Resource Allocation for Multi-Carrier Uplink NOMA Systems. IEEE Transactions on Vehicular Technology. 9293-9296.

Performance of History-based Water-Filling Algorithm for Energy-Efficient Data Transmission over Different Fading Channels

Year 2022, , 118 - 125, 30.11.2022
https://doi.org/10.31590/ejosat.1112389

Abstract

In this paper, we tackle a resource allocation problem over multiple fading channels in wireless networks. This problem is investigated in two ways. First, we consider the problem over the whole multiple fading channels altogether with no power constraint. We look for an optimal solution for this problem by considering an offline waterfillling algorithm. Then, we also propose history-based online waterfilling algorithms for this problem. This online algorithm uses the history partially in order to determine a waterfilling level based on that part of history. Then, the online policy applies this history-based determined waterfilling level to transmit data over the time horizon of the problem. The relative performance of the online and offline policies is evaluated for various types of fading channels (Rayleigh, Rician, Nakagami, Weibull) over various time horizons. The numerical results demonstrate these online waterfilling algorithms shows close performance to offline waterfilling algorithms especially for longer time horizons and by using larger portions of history.

References

  • Ajitsinh. N., Jadhav and Sakib. R. Mujawar. (2017). Different power loading allocation schemes for ofdm based cognitive radio system. International Journal of Latest Trends in Engineering and Technology, 8 (1), 350-359.
  • Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
  • Cover, T. and Thomas, J. (2006). Elements of Information Theory, 2nd Edition. Wiley&Sons.
  • Dai, M., Zhang S., Chen, B., Lin, X., &Wang, H. (2014). A refined convergence condition for iterative waterfilling algorithm. IEEE Communications Letters, 18(2), 269-272.
  • Elgarhy O. and Reggiani L., "Application of the Water Filling Algorithm to the Sum Rate Problem with Minimum Rate and Power Constraint," 2018 Advances in Wireless and Optical Communications (RTUWO), 2018, pp. 12-16.
  • Gai, Y.& Krishnamachari, B. (2012). Online Learning Algorithms for Stochastic Water-Filling. IEEE Information Theory and Applications Workshop (ITA), 1-6.
  • Goldsmith, A. (2005). Wireless Communications. Cambridge University Press.
  • Goldsmith, A., &Varaiya, P. P. (1996). Capacity, mutual information, and coding for finite-state Markov channels. IEEE Transactions on Information Theory, 42 (3), 868-886.
  • Gurdasani H., Ananth, A. G., Thangadurai N. (2021). Channel Capacity Enhancement of MIMO System using Water-Filling Algorithm. Turkish Journal of Computer and Mathematics Education.12 (12), 192-201.
  • Kim Y.; Kang M.; Varshney L. R.; Shanbhag N. R., (2018). Generalized Water-Filling for Source-Aware Energy-Efficient SRAMs. IEEE Transactions on Communications, 66 (10), 4826-4841.
  • Nazir, M., Sabah, A., Sarwar, S. et al. (2021). Power and Resource Allocation in Wireless Communication Network. Wireless Pers Commun 119, 3529-3552.
  • Noor Shahida M. K, Nordin R. and Ismail. M. (2017). Improved Water-Filling Power Allocation for Energy-Efficient Massive MIMO Downlink Transmissions. Intl Journal of Electronics& Telecommunications, vol. 63, no. 1, 79-84.
  • P. He, L. Zhao, S. Zhou, Z. Niu, (2013). Water-Filling: A Geometric Approach and its Application to Solve Generalized Radio Resource Allocation Problems. IEEE Transactions on Wireless Communications, 12 (7), 3637-3647.
  • Qi Q, Minturn A., and Yang Y. L. (2012). An Efficient Water-Filling Algorithm for Power Allocation in OFDM-Based Cognitive Radio Systems. 2012 International Conference on Systems and Informatics, 2069-2073.
  • Qian L. P., Zhang Y. J., and Huang J. (2009). MAPEL: Achieving global optimality for a non-convex wireless power control problem,” IEEE Trans. on Wireless Communications, vol. 8, no. 3, 1553-1563.
  • Qualcomm. Everything you need to know about 5G. Available at https://www.qualcomm.com/5g/what-is-5g (Accessed on 3 October 2022.)
  • Tse, D. & Viswanath, P. (2005). Fundamentals of Wirelss Communication. Cambridge University Press.
  • Teletar, E. (1995). Capacity of multi-antenna Gaussian channels. AT&T Bell Labs Internal Tech. Memo.
  • Xing, C., Jing, Y., Wang, S., Ma, S. & Poor, H. V. (2020). New Viewpoint and Algorithms for Water-Filling Solutions in Wireless Communications. in IEEE Transactions on Signal Processing, 68, 1618-1634.
  • Wael C. B. A, Armi N., Miftahushudur M. T., Muliawarda D., and Sugandi G. (2017). Power Allocation in OFDM-Based Cognitive Radio Networks for Fading Channel. in 2017 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET).
  • Wei S., Zheng Z. and Wu, C. (2021). Channel Power Allocation Optimization Based on Water-filling Algorithm in 5G. J. Phys.: Conf. Ser. 1871 012082.
  • Yang, J. and Roy, S. (1994). On joint transmitter and receiver optimization for multiple-input-multiple-output (MIMO) transmission systems. IEEE Transactions on Communications, 42(12), 3221-3231.
  • Yu S., Daoxing G., Lu L., and Xiaopei D., (2016). A modified water-filling algorithm of power allocation. in IEEE Information Technology, Networking, Electronic & Automation Control Conference, 1125-1129.
  • Zeng M., Nguyen N. P., Dobre O. A., Ding Z., and Poor H. V. (2019). Spectral- and Energy-Efficient Resource Allocation for Multi-Carrier Uplink NOMA Systems. IEEE Transactions on Vehicular Technology. 9293-9296.
There are 24 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Omer Melih Gul 0000-0002-0673-7877

Publication Date November 30, 2022
Published in Issue Year 2022

Cite

APA Gul, O. M. (2022). Performance of History-based Water-Filling Algorithm for Energy-Efficient Data Transmission over Different Fading Channels. Avrupa Bilim Ve Teknoloji Dergisi(41), 118-125. https://doi.org/10.31590/ejosat.1112389