TIM Systems: A Novel Approach for Determination of Bioaccessibility and Bioavailability of Food Components
Year 2018,
, 176 - 184, 31.12.2018
Muhammed Yusuf Çağlar
,
Mehmet Demirci
Abstract
The increasing rate of consciousness on innovative changes in foods has been increasingly grew the demand for the information about metabolism of these foods. Data about bioaccessibility and bioavailability of food components become more vital for both consumers and producers in the context of developing new healthier foods. Both nutrition and food researchers try to develop methods that allow user to obtain sufficient results of bioaccessibility and bioavailability of food compounds. Therefore, this study will summarize the TIM system, a novel system that mimics the human gastrointestinal system by all means, including working principles and studies performed in this system. In vivo and in vitro studies cannot be used as useful tool for measuring bioaccessibility and bioavailability of food components because of the physiological differences between human and animal. TIM studies were shown that this novel system could be easily used for the monitoring gastrointestinal movements of foods. In conclusion, TIM systems provide adequate data including digestibility, bioaccessibility and bioavailability of many different food products. By mimicking the GI tract, TIM system is a promising tool for the investigation of digestion, absorption components and health promoting aspects of foods.
References
- Al Hasawi, F. M., Fondaco, D., Ben-Elazar, K., Ben-Elazar, S., Fan, Y. Y., Corradini, M. G., Ludescher, R. D., Bolster, D., Carder, G., Chu, Y., Chung, Y., Kasturi, P., Johnson, J., Rogers, M. A. 2017. In vitro measurements of luminal viscosity and glucose/maltose bioaccessibility for oat bran, instant oats, and steel cut oats. Food Hydrocoll. 70: 293-303. doi:10.1016/j.foodhyd.2017.04.015.
- Anson, N. M., van den Berg, R., Havenaar, R., Bast, A., & Haenen, G. R. 2009. Bioavailability of ferulic acid is determined by its bioaccessibility. J. Cereal Sci. 49(2): 296-300. doi:10.1016/j.jcs.2008.12.001.
- Boisen, S., & Eggum, B. O. 1991. Critical evaluation of in vitro methods for estimating digestibility in simple-stomach animals. Nutr. Res. Rev. 4(1): 141-162. doi:10.1079/NRR19910012.
- Brouwers, J., Anneveld, B., Goudappel, G. J., Duchateau, G., Annaert, P., Augustijns, P., & Zeijdner, E. 2011. Food-dependent disintegration of immediate release fosamprenavir tablets: in vitro evaluation using magnetic resonance imaging and a dynamic gastrointestinal system. Eur. J. Pharm. Biopharm. 77(2): 313-319. doi:10.1016/j.ejpb.2010.10.009.
- Coles, L. T., Moughan, P. J., & Darragh, A. J. 2005. In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Anim. Feed Sci. Technol., 123, 421-444.
- de Souza, C. B., Roeselers, G., Troost, F., Jonkers, D., Koenen, M. E., & Venema, K. (2014). Prebiotic effects of cassava bagasse in TNO's in vitro model of the colon in lean versus obese microbiota. Journal of Functional Foods, 11, 210-220.
- Dickinson, P. A., Rmaileh, R. A., Ashworth, L., Barker, R. A., Burke, W. M., Patterson, C. M., Stainforth, N., & Yasin, M. (2012). An investigation into the utility of a multi-compartmental, dynamic, system of the upper gastrointestinal tract to support formulation development and establish bioequivalence of poorly soluble drugs. The AAPS journal, 14(2), 196-205.
- Gervais, R., Gagnon, F., Kheadr, E. E., Van Calsteren, M. R., Farnworth, E. R., Fliss, I., & Chouinard, P. Y. (2009). Bioaccessibility of fatty acids from conjugated linoleic acid-enriched milk and milk emulsions studied in a dynamic in vitro gastrointestinal model. International dairy journal, 19(10), 574-581.
- Havenaar, R., Anneveld, B., Hanff, L. M., de Wildt, S. N., de Koning, B. A., Mooij, M. G., Lelieveld, J. P. A., & Minekus, M. (2013). In vitro gastrointestinal model (TIM) with predictive power, even for infants and children? International journal of pharmaceutics, 457(1), 327-332.
- Havenaar, R., Bellmann, S., & Zeijdner, E. (2014). Dynamic gastro-intestinal in vitro model (TIM) for reliable prediction of stability, availability for absorption, and luminal efficacy of clinical foods and ingredients. Pharma Nutrition, 2(3), 85-86.
- Havenaar, R., Maathuis, A., de Jong, A., Mancinelli, D., Berger, A., & Bellmann, S. (2016). Herring roe protein has a high digestible indispensable amino acid score (DIAAS) using a dynamic in vitro gastrointestinal model. Nutrition Research, 36(8), 798-807.
- Kong, H., Wang, M., Venema, K., Maathuis, A., van der Heijden, R., van der Greef, J., Xu, G., & Hankemeier, T. (2009). Bioconversion of red ginseng saponins in the gastro-intestinal tract in vitro model studied by high-performance liquid chromatography–high resolution Fourier transform ion cyclotron resonance mass spectrometry. Journal of Chromatography A, 1216(11), 2195-2203.
- Krul, C., Luiten-Schuite, A., Baan, R., Verhagen, H., Mohn, G., Feron, V., & Havenaar, R. (2000). Application of a dynamic in vitro gastrointestinal tract model to study the availability of food mutagens, using heterocyclic aromatic amines as model compounds. Food and Chemical Toxicology, 38(9), 783-792.
- Larsson, K., Tullberg, C., Alminger, M., Havenaar, R., & Undeland, I. (2016). Malondialdehyde and 4-hydroxy-2-hexenal are formed during dynamic gastrointestinal in vitro digestion of cod liver oils. Food & function, 7(8), 3458-3467.
- Minekus, M. (2015). The TNO gastro-intestinal model (TIM). In The Impact of Food Bioactives on Health(pp. 37-46). Springer International Publishing.
- Minekus, M., Marteau, P., & Havenaar, R. (1995). Multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to laboratory animals: ATLA.
- Minekus, M., Smeets-Peeters, M., Bernalier, A., Marol-Bonnin, S., Havenaar, R., Marteau, P., ... & Fonty, G. (1999). A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Applied microbiology and biotechnology, 53(1), 108-114.
- Miszczycha, S. D., Thévenot, J., Denis, S., Callon, C., Livrelli, V., Alric, M., Montel, M. C., Blanquet-Diot, S., & Thevenot-Sergentet, D. (2014). Survival of Escherichia coli O26: H11 exceeds that of Escherichia coli O157: H7 as assessed by simulated human digestion of contaminated raw milk cheeses. International journal of food microbiology, 172, 40-48.
- Ramasamy, U. S., Venema, K., Gruppen, H., & Schols, H. A. (2014). The fate of chicory root pulp polysaccharides during fermentation in the TNO in vitro model of the colon (TIM-2). Bioactive Carbohydrates and Dietary Fibre, 4(1), 48-57.
- Ribnicky, D. M., Roopchand, D. E., Oren, A., Grace, M., Poulev, A., Lila, M. A., Havenaar, R., & Raskin, I. (2014). Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food chemistry, 142, 349-357.
- Rubió, L., Macià, A., Castell-Auví, A., Pinent, M., Blay, M. T., Ardévol, A., Romero, M. P., & Motilva, M. J. (2014). Effect of the co-occurring olive oil and thyme extracts on the phenolic bioaccesibility and bioavailability assessed by in vitro digestion and cell models. Food chemistry, 149, 277-284.
- Teixeira, C., Nyman, M., Andersson, R., & Alminger, M. (2017). Application of a dynamic gastrointestinal in vitro model combined with a rat model to predict the digestive fate of barley dietary fibre and evaluate potential impact on hindgut fermentation. Bioactive Carbohydrates and Dietary Fibre, 9, 7-13.
- Uriot, O., Galia, W., Awussi, A. A., Perrin, C., Denis, S., Chalancon, S., Lorson, E., Poirson, C., Junjua, M., Roux, Y. L., Alric, M., Dary, A., Blanquet-Diot, S., & Roussel, Y. (2016). Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. Food microbiology, 53, 18-29.
- Verwei, M., Minekus, M., Zeijdner, E., Schilderink, R., & Havenaar, R. (2016). Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract (TIM-1 and tiny-TIM) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms. International journal of pharmaceutics, 498(1), 178-186.
- Zúñiga, R. N. and Troncoso, E. (2012). Improving Nutrition through the Design of Food Matrices, Scientific, Health and Social Aspects of the Food Industry, Dr. Benjamin Valdez (Ed.), InTech, DOI: 10.5772/33504. Available from: https://www.intechopen.com/books/scientific-health-and-social-aspects-of-the-food-industry/improving-nutrition-through-the-design-of-food-matrices.
TIM Systems: A Novel Approach for Determination of Bioaccessibility and Bioavailability of Food Components
Year 2018,
, 176 - 184, 31.12.2018
Muhammed Yusuf Çağlar
,
Mehmet Demirci
Abstract
The increasing rate of consciousness on innovative changes in foods has been increasingly grew the demand for the information about metabolism of these foods. Data about bioaccessibility and bioavailability of food components become more vital for both consumers and producers in the context of developing new healthier foods. Both nutrition and food researchers try to develop methods that allow user to obtain sufficient results of bioaccessibility and bioavailability of food compounds. Therefore, this study will summarize the TIM system, a novel system that mimics the human gastrointestinal system by all means, including working principles and studies performed in this system. In vivo and in vitro studies cannot be used as useful tool for measuring bioaccessibility and bioavailability of food components because of the physiological differences between human and animal. TIM studies were shown that this novel system could be easily used for the monitoring gastrointestinal movements of foods. In conclusion, TIM systems provide adequate data including digestibility, bioaccessibility and bioavailability of many different food products. By mimicking the GI tract, TIM system is a promising tool for the investigation of digestion, absorption components and health promoting aspects of foods.
References
- Al Hasawi, F. M., Fondaco, D., Ben-Elazar, K., Ben-Elazar, S., Fan, Y. Y., Corradini, M. G., Ludescher, R. D., Bolster, D., Carder, G., Chu, Y., Chung, Y., Kasturi, P., Johnson, J., Rogers, M. A. 2017. In vitro measurements of luminal viscosity and glucose/maltose bioaccessibility for oat bran, instant oats, and steel cut oats. Food Hydrocoll. 70: 293-303. doi:10.1016/j.foodhyd.2017.04.015.
- Anson, N. M., van den Berg, R., Havenaar, R., Bast, A., & Haenen, G. R. 2009. Bioavailability of ferulic acid is determined by its bioaccessibility. J. Cereal Sci. 49(2): 296-300. doi:10.1016/j.jcs.2008.12.001.
- Boisen, S., & Eggum, B. O. 1991. Critical evaluation of in vitro methods for estimating digestibility in simple-stomach animals. Nutr. Res. Rev. 4(1): 141-162. doi:10.1079/NRR19910012.
- Brouwers, J., Anneveld, B., Goudappel, G. J., Duchateau, G., Annaert, P., Augustijns, P., & Zeijdner, E. 2011. Food-dependent disintegration of immediate release fosamprenavir tablets: in vitro evaluation using magnetic resonance imaging and a dynamic gastrointestinal system. Eur. J. Pharm. Biopharm. 77(2): 313-319. doi:10.1016/j.ejpb.2010.10.009.
- Coles, L. T., Moughan, P. J., & Darragh, A. J. 2005. In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Anim. Feed Sci. Technol., 123, 421-444.
- de Souza, C. B., Roeselers, G., Troost, F., Jonkers, D., Koenen, M. E., & Venema, K. (2014). Prebiotic effects of cassava bagasse in TNO's in vitro model of the colon in lean versus obese microbiota. Journal of Functional Foods, 11, 210-220.
- Dickinson, P. A., Rmaileh, R. A., Ashworth, L., Barker, R. A., Burke, W. M., Patterson, C. M., Stainforth, N., & Yasin, M. (2012). An investigation into the utility of a multi-compartmental, dynamic, system of the upper gastrointestinal tract to support formulation development and establish bioequivalence of poorly soluble drugs. The AAPS journal, 14(2), 196-205.
- Gervais, R., Gagnon, F., Kheadr, E. E., Van Calsteren, M. R., Farnworth, E. R., Fliss, I., & Chouinard, P. Y. (2009). Bioaccessibility of fatty acids from conjugated linoleic acid-enriched milk and milk emulsions studied in a dynamic in vitro gastrointestinal model. International dairy journal, 19(10), 574-581.
- Havenaar, R., Anneveld, B., Hanff, L. M., de Wildt, S. N., de Koning, B. A., Mooij, M. G., Lelieveld, J. P. A., & Minekus, M. (2013). In vitro gastrointestinal model (TIM) with predictive power, even for infants and children? International journal of pharmaceutics, 457(1), 327-332.
- Havenaar, R., Bellmann, S., & Zeijdner, E. (2014). Dynamic gastro-intestinal in vitro model (TIM) for reliable prediction of stability, availability for absorption, and luminal efficacy of clinical foods and ingredients. Pharma Nutrition, 2(3), 85-86.
- Havenaar, R., Maathuis, A., de Jong, A., Mancinelli, D., Berger, A., & Bellmann, S. (2016). Herring roe protein has a high digestible indispensable amino acid score (DIAAS) using a dynamic in vitro gastrointestinal model. Nutrition Research, 36(8), 798-807.
- Kong, H., Wang, M., Venema, K., Maathuis, A., van der Heijden, R., van der Greef, J., Xu, G., & Hankemeier, T. (2009). Bioconversion of red ginseng saponins in the gastro-intestinal tract in vitro model studied by high-performance liquid chromatography–high resolution Fourier transform ion cyclotron resonance mass spectrometry. Journal of Chromatography A, 1216(11), 2195-2203.
- Krul, C., Luiten-Schuite, A., Baan, R., Verhagen, H., Mohn, G., Feron, V., & Havenaar, R. (2000). Application of a dynamic in vitro gastrointestinal tract model to study the availability of food mutagens, using heterocyclic aromatic amines as model compounds. Food and Chemical Toxicology, 38(9), 783-792.
- Larsson, K., Tullberg, C., Alminger, M., Havenaar, R., & Undeland, I. (2016). Malondialdehyde and 4-hydroxy-2-hexenal are formed during dynamic gastrointestinal in vitro digestion of cod liver oils. Food & function, 7(8), 3458-3467.
- Minekus, M. (2015). The TNO gastro-intestinal model (TIM). In The Impact of Food Bioactives on Health(pp. 37-46). Springer International Publishing.
- Minekus, M., Marteau, P., & Havenaar, R. (1995). Multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to laboratory animals: ATLA.
- Minekus, M., Smeets-Peeters, M., Bernalier, A., Marol-Bonnin, S., Havenaar, R., Marteau, P., ... & Fonty, G. (1999). A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Applied microbiology and biotechnology, 53(1), 108-114.
- Miszczycha, S. D., Thévenot, J., Denis, S., Callon, C., Livrelli, V., Alric, M., Montel, M. C., Blanquet-Diot, S., & Thevenot-Sergentet, D. (2014). Survival of Escherichia coli O26: H11 exceeds that of Escherichia coli O157: H7 as assessed by simulated human digestion of contaminated raw milk cheeses. International journal of food microbiology, 172, 40-48.
- Ramasamy, U. S., Venema, K., Gruppen, H., & Schols, H. A. (2014). The fate of chicory root pulp polysaccharides during fermentation in the TNO in vitro model of the colon (TIM-2). Bioactive Carbohydrates and Dietary Fibre, 4(1), 48-57.
- Ribnicky, D. M., Roopchand, D. E., Oren, A., Grace, M., Poulev, A., Lila, M. A., Havenaar, R., & Raskin, I. (2014). Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food chemistry, 142, 349-357.
- Rubió, L., Macià, A., Castell-Auví, A., Pinent, M., Blay, M. T., Ardévol, A., Romero, M. P., & Motilva, M. J. (2014). Effect of the co-occurring olive oil and thyme extracts on the phenolic bioaccesibility and bioavailability assessed by in vitro digestion and cell models. Food chemistry, 149, 277-284.
- Teixeira, C., Nyman, M., Andersson, R., & Alminger, M. (2017). Application of a dynamic gastrointestinal in vitro model combined with a rat model to predict the digestive fate of barley dietary fibre and evaluate potential impact on hindgut fermentation. Bioactive Carbohydrates and Dietary Fibre, 9, 7-13.
- Uriot, O., Galia, W., Awussi, A. A., Perrin, C., Denis, S., Chalancon, S., Lorson, E., Poirson, C., Junjua, M., Roux, Y. L., Alric, M., Dary, A., Blanquet-Diot, S., & Roussel, Y. (2016). Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut. Food microbiology, 53, 18-29.
- Verwei, M., Minekus, M., Zeijdner, E., Schilderink, R., & Havenaar, R. (2016). Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract (TIM-1 and tiny-TIM) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms. International journal of pharmaceutics, 498(1), 178-186.
- Zúñiga, R. N. and Troncoso, E. (2012). Improving Nutrition through the Design of Food Matrices, Scientific, Health and Social Aspects of the Food Industry, Dr. Benjamin Valdez (Ed.), InTech, DOI: 10.5772/33504. Available from: https://www.intechopen.com/books/scientific-health-and-social-aspects-of-the-food-industry/improving-nutrition-through-the-design-of-food-matrices.