Review
BibTex RIS Cite

Pure Culture Microorganisms Used in Microbial Fuel Cells and General Properties

Year 2020, , 109 - 117, 15.04.2020
https://doi.org/10.31590/ejosat.669787

Abstract

Biomass energy is a renewable energy that running an unavoidable task in meeting today's ever increasing energy demands. Unlike biofuels, microbial fuel cells convert energy harvested at organic materials directly into bioelectricity. Microbial fuel cells (MFC’s) are development-oriented as well-rounded a renewable energy technology. Microbial fuel cell (MFC) is an environmentally friendly technology used for electrical energy generation from a variety of organic materials (substrates). Microbial fuel cells have acquired considerable interest as an alternative energy conversion system for direct electrical energy generating. Microbial fuel cells can utilize low‐grade organic carbons as the fuel source in the waste environment. Microbial fuel cells (MFCs) have apparent benefits in that it can as fuel source utilize low‐grade biomass or even wastewater. The basis of electricity generation in microbial fuel cells is the catalysed of organic materials by microorganisms. In a microbial fuel cell, organic materials (substrates) are electron donors. Microbial fuel cells use microorganisms as biocatalysts to oxidize organic materials (substrate). Electrons released by anodic biofilm bacteria after oxidation (biocatalysis) works of the organic materials are first transferred to the anode electrode under anoxic condition. The bacteria that make these processes are called electrogen. Anode electrode is used by the electrogenic biofilm bacteria as the electron acceptor for anaerobic respiration. So, an electron transfer process takes place between the anode and the microorganism. Electron transfer among microorganism and electrodes occurs on two mechanisms, namely direct electron transfer and indirect (mediated) electron transfer. In this article, electron transfer mechanism from electrogenic microorganisms to anode electrode is discussed in detail. The use of pure microorganism cultures in microbial fuel cells has been told. Suggestions have been made for the future status of electrogenic microorganisms in microbial fuel cells. According to these results of this article, reconnaissance of electrogenic microorganisms with high electrochemical activities would probably be an extraordinary status for promoting the development of microbial fuel cells for very presumably future practical system works.

References

  • Abrevaya, X. C., Sacco, N., Mauas, P. J. D., Cortón, E., 2011. Archaea-based microbial fuel cell operating at high ionic strength conditions. Extremophiles.15(6), 633-642.
  • Ahmed, M., Lin, O., Saup, C. M., Wilkins, M. J., Lin, L-S., 2019. Effects of Fe/S ratio on the kinetics and microbial ecology of an Fe(III)-dosed anaerobic wastewater treatment system. Journal of Hazardous Materials, 369, 593-600.
  • Ahn, Y., Logan, B. E., 2013. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design. Applied Microbiology and Biotechnology, 97, 409-416.
  • Alfonta, L., 2010. Genetically engineered microbial fuel cells. Electroanalysis, 22, 822-831.
  • Amano, N., Yamamuro, A., Miyahara, M., Kouzuma, A., Abe, T., Watanabe, K.. 2018. Methylomusa anaerophila gen. nov., sp. nov., an anaerobic methanol-utilizing bacterium isolated from a microbial fuel cell. International Journal of Systematıc and Evolutionary Microbiology, 68(4), 1118-1122.
  • Borole, A. P., O’Neill, H., Tsouris, C., Cesar, S., 2008. A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnology Letters, 30, 1367-1372.
  • Cao, Y., Mu, H., Liu, W., Zhang, R., Guo, J., Xian, M., Liu, H., 2019. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microbial Cell Factories, 18, 14 pages.
  • Chen, C-Y., Tsai, T-H., Wu, P-S., Tsao, S-E., Huang, Y-S., Chung, Y-C., 2018. Selection of electrogenic bacteria for microbial fuel cell in removing Victoria blue R from wastewater. Journal of Environmental Science and Health, Part A, 53(2), 108-115.
  • Chen, S., Patil, S. A., Brown, R. K., Schröder, U., 2019. Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation. Applied Energy, 233-234, 15-28.
  • Cho, Y. K., Donohue, T. J., Tejedor, I., Anderson, M.A., McMahon, K. D., Noguera, D. R., 2008. Development of a solar-powered microbial fuel cell. Journal of Applied Microbiology, 104, 640-650.
  • Çek, N., 2013. Yeni Biyoenerji Tekniğiyle Elektrik Üretilmesi. Çukurova Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 28(2), 35-49.
  • Çek, N., 2016a. Parçacıklar ve Enerji Kaynakları. Lambert Academic Publishing, 338 s, Saarbrucken, Almanya.
  • Çek, N., 2016b. Parçacıklar ve Parçacıkların Enerji Kaynakları Üzerinde Etkileri. Avrupa Bilim ve Teknoloji Dergisi, 4(7), 1-8.
  • Çek, N., 2017. Examination of zinc electrode performance in microbial fuel cells. Gazi University Journal of Science, 30(4), 395-402.
  • Çek, N., Erensoy, A., 2019. Kompost Mikrobiyal Yakıt Hücreleri İçin Titanyum Elektrot Performansının İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (17), 909-915.
  • Erensoy, A., Çek, N., 2018. Alternative Biofuel Materials for Microbial Fuel Cells from Poplar Wood. ChemistrySelect, 3, 1251-11257.
  • Evelyn, L., Marshall, A., Gostomski, P. A., 2014. Gaseous pollutant treatment and electricity generation in microbial fuel cells (MFCs) utilising redox mediators. Reviews in Environmental Science and Bio/Technology, 13, 35-51.
  • Fu, C. C., Hung, T. C., Wu, W. T., Wen, T. C., Su, C. H., 2010. Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis. Biochemical Engineering Journal, 52, 175-80.
  • Gomez, M. V., Mai, G., Greenwood, T., Mullins, J. P., 2014. The development and maximization of a novel photosynthetic microbial fuel cell using Rhodospirillum rubrum. Journal of Emerging Investigators, 3, 1-7.
  • Haavisto, J. M., Lakaniemi, A-M., Puhakka, J. A., 2019. Storing of exoelectrogenic anolyte for efficient microbial fuel cell recovery. Environmental Technology, 40(11), 1467-1475.
  • Hassani, S. S., Ziaedini, A., Samiee, L., Dehghani, M., Mashayekhi, M., Faramarzi, M. A., 2019. One Step Synthesis of Tertiary Co‐doped Graphene Electrocatalyst Using Microalgae Synechococcus elangatus for Applying in Microbial Fuel Cell. Fuel Cells, 19(5), 623-634. Haslett, N. D., Rawson, F. J., Barriëre, F., Kunze, G., Pasco, N., Gooneratne, R., Baronian, K. H. R., 2011. Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosensors and Bioelectronics, 26, 3742-3747.
  • He, L., Du, P., Chen, Y., Lu, H., Cheng, X., Chang, B., Wang, Z., 2017. Advances in microbial fuel cells for wastewater treatment. Renewable&Sustainable Energy Reviews, 71, 388-403.
  • Holmes, D. E., Nicoll, J. S., Bond, D. R., Lovley, D. R., 2004. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Applied Environmantal Microbiology, 70, 6023-6030.
  • Hubenova, Y., Mitov, M., 2010. Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry, 78, 57-61.
  • Kondaveeti, S., Choi, K. S., Kakarla, R., Min, B., 2014. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). Frontiers of Environmental Science & Engineering, 8(5),784-791.
  • Lan, J. C. W., Raman, K., Huang, C. M., Chang, C. M., 2013. The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst. Biochemical Engineering Journal, 78, 39-43.
  • Lapinsonnière, L., Picot, M., Poriel, C., Barrière, F., 2013. Phenylboronic acid modifed anodes promote faster bioflm adhesion and increase microbial fuel cell performances. Electroanalysis, 25, 601-605.
  • Light, S. H., Su, L., Rivera-Lugo, R., Cornejo, J. A., Louie, A., Iavarone, A. T., Ajo-Franklin, C. M., Portnoy, D. A., 2018. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria, Nature, 562, 140-144.
  • Liu, H., Ramnarayanan, R., Logan, B. E., 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38, 2281-2285.
  • Liu, H., Grot, S., Logan, B. E., 2005. Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology, 39 4317-4320.
  • Liu, J., Guo, T., Wang, D., Ying, H. 2015. Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell. Biotechnology Letters, 37, 95-100.
  • Liu, Z. D., Li, H. R., 2007. Efects of bio- and abio-factors on electricity production in a mediatorless microbial fuel cell. Biochemical Engineering Journal. 36, 209-214.
  • Ma, M., Cao, L., Ying, X., Deng, Z., 2012. Study on the performance of photosynthetic microbial fuel cells powered by Synechocystis PCC-6803. Renew. Energy Resour., 30, 42-46.
  • Malvankar, N. S., Lovley D. R., 2012. Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem, 5, 1039-1046.
  • Ng, FL., Phang, SM., Periasamy, V., Yunus, K., Fisher, A. C., 2014. Evaluation of algal bioflms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance. PLoS ONE, 9(5), e97643.
  • Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B., Sayama, M. 2010. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature, 463, 1071-1074.
  • Pankratova, G., Hederstedt, L., Gorton, L., 2019. Extracellular electron transfer features of Gram-positive bacteria. Analytica Chimica Acta, 1076, 32-47.
  • Pareek, A., Sravan, J.S., Mohan, S.V., 2019. Exploring chemically reduced graphene oxide electrode for power generation in microbial fuel cell. Materials Science for Energy Technologies, 2(3), 600-606.
  • Patil, S. A., Hägerhäll, C., Gorton, L., 2012. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanalytical reviews, 4, 159-192.
  • Pfeffer, C., Larsen, S., Song, J., Dong, M. D., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. A., Leung, K. M., Schramm, A., Risgaard-Petersen, N., Nielsen, L. P. 2012. Filamentous bacteria transport electrons over centimetre distances. Nature, 491, 218-221.
  • Pirbadian, S., El-Naggar, M. Y., 2012. Multistep hopping and extracellular charge transfer in microbial redox chains. Physical Chemistry Chemical Physics, 14, 13802-13808.
  • Qiao, Y., Wu, X. S., Li, C. M., 2014. Interfacial electron transfer of Shewanella putrefaciens enhanced by nanofaky nickel oxide array in microbial fuel cells. Journal of Power Sources, 266, 226-231.
  • Raghavulu, S. V., Goud, R. K., Sarma, P. N., Mohan, S. V., 2011. Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: infuence of redox condition and substrate load. Bioresource Technology, 102, 2751-2757.
  • Rosenbaum, M. A., Franks, A. E. 2014. Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Applied Microbiology and Biotechnology, 98, 509-518.
  • Schneider, G., Kovács, T., Rákhely, G., Czeller, M., 2016. Biosensoric potential of microbial fuel cells. Applied Microbiology and Biotechnology, 100, 7001-7009.
  • Sekar, N., Umasankar, Y., Ramasamy, R. P., 2014. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photobioelectrochemical cells. Physical Chemistry Chemical Physics, 16, 7862-7871.
  • Shreeram, D. D., Panmanee, W., McDaniel, C. T., Daniel, S., Schaefer, D. W., Hassett, D. J., 2018. Efect of impaired twitching motility and bioflm dispersion on performance of Pseudomonas aeruginosa-powered microbial fuel cells. Journal of Industrial Microbiology & Biotechnology, 45, 103-109.
  • Xiang, K., Qiao, Y., Ching, C. B., Li, C. M., 2009. GldA overexpressing-engineered E. Coli as superior electrocatalyst for microbial fuel cells. Electrochemistry Communications, 11, 1593-1595.
  • Xing, D., Zuo, Y., Cheng, S., Regan, J. M., Logan, B. E., 2008. Electricity generation by Rhodopseudomonas palustris DX-1. Environmental Science & Technology, 42, 4146-4151.
  • Xu, C., Poon, K., Choi, M. M. F., Wang, R., 2015. Using live algae at the anode of a microbial fuel cell to generate electricity. Environmental Science and Pollution Research, 22, 15621-15635.
  • Yi, H., Nevin, K. P., Kim, B. C., Franks, A. E., Klimes, A., Tender, L. M., Lovley, D. R., 2009. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosensors and Bioelectronics, 24, 3498-3503.
  • Zhao, F., Slade, R. C. T., Varcoe, J.R. 2009. Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chemical Society Reviews, 38, 1926-1939.
  • Zuo, Y., Xing, D., Regan, J. M., Logan, B. E., 2008. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Applied and Environmental Microbiology, 74(10), 3130-3137.

Mikrobiyal Yakıt Hücrelerinde Kullanılan Saf Kültür Mikroorganizmaları ve Genel Özellikleri

Year 2020, , 109 - 117, 15.04.2020
https://doi.org/10.31590/ejosat.669787

Abstract

Biyokütle enerjisi, günümüzün artan enerji taleplerini karşılamakta kaçınılmaz bir görev yürüten yenilenebilir bir enerjidir. Biyoyakıtların aksine, mikrobiyal yakıt hücreleri organik malzemelerde toplanan enerjiyi doğrudan biyoelektrikliğe dönüştürür. Mikrobiyal yakıt hücreleri, kalkınma odaklı ve çok yönlü bir yenilenebilir enerji teknolojisidir. Mikrobiyal yakıt hücresi (MYH), çeşitli organik malzemelerden (substratlardan) elektrik enerjisi üretimi için kullanılan çevre dostu bir teknolojidir. Mikrobiyal yakıt hücreleri, doğrudan elektrik enerjisi üretimi için alternatif bir enerji dönüşüm sistemi olarak büyük ilgi gördü. Mikrobiyal yakıt hücreleri (MYH’ler), atık ortamda yakıt kaynağı olarak düşük dereceli organik karbonları kullanabilir. Mikrobiyal yakıt hücrelerinin, yakıt kaynağı olarak düşük dereceli biyokütle veya hatta atık su kullanabilmesinden dolayı belirgin faydaları vardır. Mikrobiyal yakıt hücrelerinde elektrik üretiminin temeli, organik malzemelerin mikroorganizmalar tarafından katalize edilmesidir. Çünkü mikrobiyal yakıt hücreleri, organik maddeleri (substrat) oksitlemek için biyokatalizörler olarak mikroorganizmaları kullanır. Bir mikrobiyal yakıt hücresinde, organik maddeler (substratlar) elektron vericileridir. Organik malzemelerin oksidasyon (biyokataliz) çalışmalarından sonra anodik biyofilm bakterileri tarafından açığa çıkarılan elektronlar ilk önce anoksik koşullar altında anot elektrota aktarılır. Bu işlemleri yapan bakterilere elektrojen denir. Anot elektrot, elektrojenik biyofilm bakterileri tarafından anaerobik solunum için elektron alıcısı olarak kullanılır. Yani, anot ve mikroorganizma arasında bir elektron transfer işlemi gerçekleşir. Mikroorganizma ve elektrotlar arasındaki elektron transferi, doğrudan elektron transferi ve dolaylı (aracılı) elektron transferi olmak üzere iki mekanizmada gerçekleşir. Bu çalışmada, elektrojenik mikroorganizmalardan anot elektroduna elektron transfer mekanizması ayrıntılı olarak tartışılmıştır. Saf mikroorganizma kültürlerinin mikrobiyal yakıt hücrelerinde kullanımı anlatılmıştır. Bu çalışmanın sonucuna göre, yüksek elektrokimyasal aktivitelere sahip elektrojenik mikroorganizmaların keşfi, muhtemelen gelecekteki pratik sistem çalışmaları için mikrobiyal yakıt hücrelerinin gelişimini teşvik etmek için olağanüstü bir durum olacaktır.

References

  • Abrevaya, X. C., Sacco, N., Mauas, P. J. D., Cortón, E., 2011. Archaea-based microbial fuel cell operating at high ionic strength conditions. Extremophiles.15(6), 633-642.
  • Ahmed, M., Lin, O., Saup, C. M., Wilkins, M. J., Lin, L-S., 2019. Effects of Fe/S ratio on the kinetics and microbial ecology of an Fe(III)-dosed anaerobic wastewater treatment system. Journal of Hazardous Materials, 369, 593-600.
  • Ahn, Y., Logan, B. E., 2013. Domestic wastewater treatment using multi-electrode continuous flow MFCs with a separator electrode assembly design. Applied Microbiology and Biotechnology, 97, 409-416.
  • Alfonta, L., 2010. Genetically engineered microbial fuel cells. Electroanalysis, 22, 822-831.
  • Amano, N., Yamamuro, A., Miyahara, M., Kouzuma, A., Abe, T., Watanabe, K.. 2018. Methylomusa anaerophila gen. nov., sp. nov., an anaerobic methanol-utilizing bacterium isolated from a microbial fuel cell. International Journal of Systematıc and Evolutionary Microbiology, 68(4), 1118-1122.
  • Borole, A. P., O’Neill, H., Tsouris, C., Cesar, S., 2008. A microbial fuel cell operating at low pH using the acidophile Acidiphilium cryptum. Biotechnology Letters, 30, 1367-1372.
  • Cao, Y., Mu, H., Liu, W., Zhang, R., Guo, J., Xian, M., Liu, H., 2019. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microbial Cell Factories, 18, 14 pages.
  • Chen, C-Y., Tsai, T-H., Wu, P-S., Tsao, S-E., Huang, Y-S., Chung, Y-C., 2018. Selection of electrogenic bacteria for microbial fuel cell in removing Victoria blue R from wastewater. Journal of Environmental Science and Health, Part A, 53(2), 108-115.
  • Chen, S., Patil, S. A., Brown, R. K., Schröder, U., 2019. Strategies for optimizing the power output of microbial fuel cells: Transitioning from fundamental studies to practical implementation. Applied Energy, 233-234, 15-28.
  • Cho, Y. K., Donohue, T. J., Tejedor, I., Anderson, M.A., McMahon, K. D., Noguera, D. R., 2008. Development of a solar-powered microbial fuel cell. Journal of Applied Microbiology, 104, 640-650.
  • Çek, N., 2013. Yeni Biyoenerji Tekniğiyle Elektrik Üretilmesi. Çukurova Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 28(2), 35-49.
  • Çek, N., 2016a. Parçacıklar ve Enerji Kaynakları. Lambert Academic Publishing, 338 s, Saarbrucken, Almanya.
  • Çek, N., 2016b. Parçacıklar ve Parçacıkların Enerji Kaynakları Üzerinde Etkileri. Avrupa Bilim ve Teknoloji Dergisi, 4(7), 1-8.
  • Çek, N., 2017. Examination of zinc electrode performance in microbial fuel cells. Gazi University Journal of Science, 30(4), 395-402.
  • Çek, N., Erensoy, A., 2019. Kompost Mikrobiyal Yakıt Hücreleri İçin Titanyum Elektrot Performansının İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (17), 909-915.
  • Erensoy, A., Çek, N., 2018. Alternative Biofuel Materials for Microbial Fuel Cells from Poplar Wood. ChemistrySelect, 3, 1251-11257.
  • Evelyn, L., Marshall, A., Gostomski, P. A., 2014. Gaseous pollutant treatment and electricity generation in microbial fuel cells (MFCs) utilising redox mediators. Reviews in Environmental Science and Bio/Technology, 13, 35-51.
  • Fu, C. C., Hung, T. C., Wu, W. T., Wen, T. C., Su, C. H., 2010. Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis. Biochemical Engineering Journal, 52, 175-80.
  • Gomez, M. V., Mai, G., Greenwood, T., Mullins, J. P., 2014. The development and maximization of a novel photosynthetic microbial fuel cell using Rhodospirillum rubrum. Journal of Emerging Investigators, 3, 1-7.
  • Haavisto, J. M., Lakaniemi, A-M., Puhakka, J. A., 2019. Storing of exoelectrogenic anolyte for efficient microbial fuel cell recovery. Environmental Technology, 40(11), 1467-1475.
  • Hassani, S. S., Ziaedini, A., Samiee, L., Dehghani, M., Mashayekhi, M., Faramarzi, M. A., 2019. One Step Synthesis of Tertiary Co‐doped Graphene Electrocatalyst Using Microalgae Synechococcus elangatus for Applying in Microbial Fuel Cell. Fuel Cells, 19(5), 623-634. Haslett, N. D., Rawson, F. J., Barriëre, F., Kunze, G., Pasco, N., Gooneratne, R., Baronian, K. H. R., 2011. Characterisation of yeast microbial fuel cell with the yeast Arxula adeninivorans as the biocatalyst. Biosensors and Bioelectronics, 26, 3742-3747.
  • He, L., Du, P., Chen, Y., Lu, H., Cheng, X., Chang, B., Wang, Z., 2017. Advances in microbial fuel cells for wastewater treatment. Renewable&Sustainable Energy Reviews, 71, 388-403.
  • Holmes, D. E., Nicoll, J. S., Bond, D. R., Lovley, D. R., 2004. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Applied Environmantal Microbiology, 70, 6023-6030.
  • Hubenova, Y., Mitov, M., 2010. Potential application of Candida melibiosica in biofuel cells. Bioelectrochemistry, 78, 57-61.
  • Kondaveeti, S., Choi, K. S., Kakarla, R., Min, B., 2014. Microalgae Scenedesmus obliquus as renewable biomass feedstock for electricity generation in microbial fuel cells (MFCs). Frontiers of Environmental Science & Engineering, 8(5),784-791.
  • Lan, J. C. W., Raman, K., Huang, C. M., Chang, C. M., 2013. The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst. Biochemical Engineering Journal, 78, 39-43.
  • Lapinsonnière, L., Picot, M., Poriel, C., Barrière, F., 2013. Phenylboronic acid modifed anodes promote faster bioflm adhesion and increase microbial fuel cell performances. Electroanalysis, 25, 601-605.
  • Light, S. H., Su, L., Rivera-Lugo, R., Cornejo, J. A., Louie, A., Iavarone, A. T., Ajo-Franklin, C. M., Portnoy, D. A., 2018. A flavin-based extracellular electron transfer mechanism in diverse Gram-positive bacteria, Nature, 562, 140-144.
  • Liu, H., Ramnarayanan, R., Logan, B. E., 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38, 2281-2285.
  • Liu, H., Grot, S., Logan, B. E., 2005. Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology, 39 4317-4320.
  • Liu, J., Guo, T., Wang, D., Ying, H. 2015. Clostridium beijerinckii mutant obtained atmospheric pressure glow discharge generates enhanced electricity in a microbial fuel cell. Biotechnology Letters, 37, 95-100.
  • Liu, Z. D., Li, H. R., 2007. Efects of bio- and abio-factors on electricity production in a mediatorless microbial fuel cell. Biochemical Engineering Journal. 36, 209-214.
  • Ma, M., Cao, L., Ying, X., Deng, Z., 2012. Study on the performance of photosynthetic microbial fuel cells powered by Synechocystis PCC-6803. Renew. Energy Resour., 30, 42-46.
  • Malvankar, N. S., Lovley D. R., 2012. Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem, 5, 1039-1046.
  • Ng, FL., Phang, SM., Periasamy, V., Yunus, K., Fisher, A. C., 2014. Evaluation of algal bioflms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance. PLoS ONE, 9(5), e97643.
  • Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B., Sayama, M. 2010. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature, 463, 1071-1074.
  • Pankratova, G., Hederstedt, L., Gorton, L., 2019. Extracellular electron transfer features of Gram-positive bacteria. Analytica Chimica Acta, 1076, 32-47.
  • Pareek, A., Sravan, J.S., Mohan, S.V., 2019. Exploring chemically reduced graphene oxide electrode for power generation in microbial fuel cell. Materials Science for Energy Technologies, 2(3), 600-606.
  • Patil, S. A., Hägerhäll, C., Gorton, L., 2012. Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanalytical reviews, 4, 159-192.
  • Pfeffer, C., Larsen, S., Song, J., Dong, M. D., Besenbacher, F., Meyer, R. L., Kjeldsen, K. U., Schreiber, L., Gorby, Y. A., El-Naggar, M. A., Leung, K. M., Schramm, A., Risgaard-Petersen, N., Nielsen, L. P. 2012. Filamentous bacteria transport electrons over centimetre distances. Nature, 491, 218-221.
  • Pirbadian, S., El-Naggar, M. Y., 2012. Multistep hopping and extracellular charge transfer in microbial redox chains. Physical Chemistry Chemical Physics, 14, 13802-13808.
  • Qiao, Y., Wu, X. S., Li, C. M., 2014. Interfacial electron transfer of Shewanella putrefaciens enhanced by nanofaky nickel oxide array in microbial fuel cells. Journal of Power Sources, 266, 226-231.
  • Raghavulu, S. V., Goud, R. K., Sarma, P. N., Mohan, S. V., 2011. Saccharomyces cerevisiae as anodic biocatalyst for power generation in biofuel cell: infuence of redox condition and substrate load. Bioresource Technology, 102, 2751-2757.
  • Rosenbaum, M. A., Franks, A. E. 2014. Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Applied Microbiology and Biotechnology, 98, 509-518.
  • Schneider, G., Kovács, T., Rákhely, G., Czeller, M., 2016. Biosensoric potential of microbial fuel cells. Applied Microbiology and Biotechnology, 100, 7001-7009.
  • Sekar, N., Umasankar, Y., Ramasamy, R. P., 2014. Photocurrent generation by immobilized cyanobacteria via direct electron transport in photobioelectrochemical cells. Physical Chemistry Chemical Physics, 16, 7862-7871.
  • Shreeram, D. D., Panmanee, W., McDaniel, C. T., Daniel, S., Schaefer, D. W., Hassett, D. J., 2018. Efect of impaired twitching motility and bioflm dispersion on performance of Pseudomonas aeruginosa-powered microbial fuel cells. Journal of Industrial Microbiology & Biotechnology, 45, 103-109.
  • Xiang, K., Qiao, Y., Ching, C. B., Li, C. M., 2009. GldA overexpressing-engineered E. Coli as superior electrocatalyst for microbial fuel cells. Electrochemistry Communications, 11, 1593-1595.
  • Xing, D., Zuo, Y., Cheng, S., Regan, J. M., Logan, B. E., 2008. Electricity generation by Rhodopseudomonas palustris DX-1. Environmental Science & Technology, 42, 4146-4151.
  • Xu, C., Poon, K., Choi, M. M. F., Wang, R., 2015. Using live algae at the anode of a microbial fuel cell to generate electricity. Environmental Science and Pollution Research, 22, 15621-15635.
  • Yi, H., Nevin, K. P., Kim, B. C., Franks, A. E., Klimes, A., Tender, L. M., Lovley, D. R., 2009. Selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosensors and Bioelectronics, 24, 3498-3503.
  • Zhao, F., Slade, R. C. T., Varcoe, J.R. 2009. Techniques for the study and development of microbial fuel cells: an electrochemical perspective. Chemical Society Reviews, 38, 1926-1939.
  • Zuo, Y., Xing, D., Regan, J. M., Logan, B. E., 2008. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Applied and Environmental Microbiology, 74(10), 3130-3137.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ahmet Erensoy 0000-0001-6300-1105

Nurettin Çek 0000-0001-6120-9228

Publication Date April 15, 2020
Published in Issue Year 2020

Cite

APA Erensoy, A., & Çek, N. (2020). Mikrobiyal Yakıt Hücrelerinde Kullanılan Saf Kültür Mikroorganizmaları ve Genel Özellikleri. Avrupa Bilim Ve Teknoloji Dergisi(18), 109-117. https://doi.org/10.31590/ejosat.669787