Düşük Maliyetli İnsansız Su Altı Araç Tasarımı
Year 2020,
, 363 - 367, 05.10.2020
Talha Gülgün
,
Göksel Alankaya
,
Muhammet Emin Duran
,
Mertcan Erdoğdu
,
İsmail Yalçınkaya
,
Akif Durdu
,
Hakan Terzioğlu
Abstract
İnsansız su altı araçları askeri, ticari ve araştırma inceleme alanlarında ihtiyaç duyulan bir araç haline gelmiştir. Su altı araçları, monte edilecek olan robot kol veya kollar ile su altında arama kurtarma faaliyetlerinde çalışabilir, su altından cisim çıkarabilir ve onarım görevlerinde aktif rol oynayabilirler. Bununla birlikte araçta kullanılacak kameralar ile suyun derinliklerinde hedef takibi ve haritalama gibi görevleri de üstlenebilirler. Bu çalışmada, su altı keşif ve temizlik gibi görevlerde kullanılabilecek düşük maliyetli iki adet insansız su altı araç tasarımı gerçekleştirilmiştir. Tasarlanan araçlarda motorların sayıları aynı tutulurken, iki farklı dizilime yer verilmiştir. Tasarıma başlarken öncelik olarak güvenlik ön planda tutulup; maliyet, kullanışlılık ve imalat kolaylığı gibi birçok başlık referans alınmıştır. El çizimi ile kâğıda dökülen tasarımlar dikkatle incelenerek herhangi bir ihmal, hata, yanlış hesaplama gibi olumsuzlukların önüne geçilmiştir. Üretilen araç su içerisinde yüksek hareket kabiliyetine sahip ve oluşabilecek dış etkenler karşısında su içerisinde kendi dengesini sağlayabilen bir yapıdadır. Bu yüksek hareket kabiliyeti altı adet su altı motoru kullanılarak sağlanmıştır. Aracın yüzerliliğini maksimum seviyeye çıkarmak adına araçta kullanılan malzemeler özenle seçilmiştir. Araç şasisi pleksiglas malzemeden üretilmiştir ve elektronik bileşenlerin korunması için sızdırmazlığı sağlanmış akrilik tüp kullanılmıştır. Şasinin ön kısmında, planlanan görevleri yerine getirmek amacıyla PLA flament malzemesinden üretilen robot kol bulunmaktadır. Mekaniksel donanım tasarlanırken statik ve akış analizleri göz önünde bulundurularak nihai tasarım oluşturulmuştur.
References
- Amory, A., & Maehle, E. (2018). Modelling and CFD simulation of a micro autonomous underwater vehicle SEMBIO. Paper presented at the OCEANS 2018 MTS/IEEE Charleston.
- Aureli, M., Kopman, V., & Porfiri, M. (2009). Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME transactions on mechatronics, 15(4), 603-614.
- CANLI, G. A., KURTOĞLU, İ., CANLI, M. O., & TUNA, Ö. S. DÜNYADA VE ÜLKEMİZDE İNSANSIZ SUALTI ARAÇLARI İSAA-AUV & ROV TASARIM VE UYGULAMALARI. GİDB Dergi(04), 43-75.
- Choi, H.-T., Hanai, A., Choi, S. K., & Yuh, J. (2003). Development of an underwater robot, ODIN-III. Paper presented at the Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453).
- Christ, R. D., & Wernli Sr, R. L. (2013). The ROV manual: a user guide for remotely operated vehicles: Butterworth-Heinemann.
- Colbrunn, R. W., Nelson, G. M., & Quinn, R. D. (2001). Design and control of a robotic leg with braided pneumatic actuators. Paper presented at the Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180).
- Cui, R., Ge, S. S., How, B. V. E., & Choo, Y. S. (2010). Leader–follower formation control of underactuated autonomous underwater vehicles. Ocean Engineering, 37(17-18), 1491-1502.
- Eustice, R. M., Pizarro, O., & Singh, H. (2008). Visually augmented navigation for autonomous underwater vehicles. IEEE Journal of oceanic Engineering, 33(2), 103-122.
- Gonzalez, L. A. (2004). Design, modelling and control of an autonomous underwater vehicle. BE Thesis, The University of Western Australia, Australia.
- Healey, A. J., & Good, M. R. (1992). The NPS AUVII Autonomous Underwater Vehicle Testbed: Design and Experimental Verification. Naval Engineers Journal, 104(3), 191-202.
- Kimber, N., & Scrimshaw, K. (1994). Hydrodynamic testing of a 3/4 scale autosub model. Paper presented at the Oceanology International.
- Morgansen, K. A., Triplett, B. I., & Klein, D. J. (2007). Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Transactions on Robotics, 23(6), 1184-1199.
- Omerdic, E., & Roberts, G. (2004). Thruster fault diagnosis and accommodation for open-frame underwater vehicles. Control engineering practice, 12(12), 1575-1598.
- Stutters, L., Liu, H., Tiltman, C., & Brown, D. J. (2008). Navigation technologies for autonomous underwater vehicles. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(4), 581-589.
- von Alt, C. (2003). ’Autonomous Underwater Vehicles’, Woods Hole Oceanographic Institution. In: Technical Report, March.
- Wu, C.-J. (2018). 6-DoF Modelling and Control of a Remotely Operated Vehicle. Flinders University, College of Science and Engineering.,
- Wynn, R. B., Huvenne, V. A., Le Bas, T. P., Murton, B. J., Connelly, D. P., Bett, B. J., . . . Parsons, D. R. (2014). Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Marine Geology, 352, 451-468.
Low-Cost Unmanned Underwater Vehicle Design
Year 2020,
, 363 - 367, 05.10.2020
Talha Gülgün
,
Göksel Alankaya
,
Muhammet Emin Duran
,
Mertcan Erdoğdu
,
İsmail Yalçınkaya
,
Akif Durdu
,
Hakan Terzioğlu
Abstract
Unmanned underwater vehicles have become a tool needed in military, commercial and research review areas. underwater vehicles can take an active role in underwater search and rescue activities to remove objects from underwater and to make repairs with the arms to be mounted. In addition, they can undertake tasks such as target tracking and mapping at low depths with the cameras to be used in the vehicle. In this study, designed two low-cost unmanned underwater vehicles that could be used for missions such as underwater exploration and cleaning. While the number of engines were kept the same in the designed vehicles, two different sequences were used. When starting the design, they were a lot of titles take as a reference such as safety, cost, usability and ease of manufacturing. The designs that were drawn on paper with hand drawing were carefully examined and any negativity such as negligence, error, miscalculation was prevented. The manufactured vehicle has a high mobility in water and can maintain its own balance in water against external factors that may occur. This high mobility was achieved by using a six underwater thrusters. In order to maximize the buoyancy of the vehicle, the materials used in the vehicle were carefully selected. The vehicle chassis is made of Plexiglas and a sealed acrylic tube is used to protect the electronic components. In the front of the chassis, there is a robot arm made of PLA filament material in order to fulfill the planned tasks. While designing the mechanical equipment, the final design was created by considering the static and flow analysis.
References
- Amory, A., & Maehle, E. (2018). Modelling and CFD simulation of a micro autonomous underwater vehicle SEMBIO. Paper presented at the OCEANS 2018 MTS/IEEE Charleston.
- Aureli, M., Kopman, V., & Porfiri, M. (2009). Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME transactions on mechatronics, 15(4), 603-614.
- CANLI, G. A., KURTOĞLU, İ., CANLI, M. O., & TUNA, Ö. S. DÜNYADA VE ÜLKEMİZDE İNSANSIZ SUALTI ARAÇLARI İSAA-AUV & ROV TASARIM VE UYGULAMALARI. GİDB Dergi(04), 43-75.
- Choi, H.-T., Hanai, A., Choi, S. K., & Yuh, J. (2003). Development of an underwater robot, ODIN-III. Paper presented at the Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453).
- Christ, R. D., & Wernli Sr, R. L. (2013). The ROV manual: a user guide for remotely operated vehicles: Butterworth-Heinemann.
- Colbrunn, R. W., Nelson, G. M., & Quinn, R. D. (2001). Design and control of a robotic leg with braided pneumatic actuators. Paper presented at the Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No. 01CH37180).
- Cui, R., Ge, S. S., How, B. V. E., & Choo, Y. S. (2010). Leader–follower formation control of underactuated autonomous underwater vehicles. Ocean Engineering, 37(17-18), 1491-1502.
- Eustice, R. M., Pizarro, O., & Singh, H. (2008). Visually augmented navigation for autonomous underwater vehicles. IEEE Journal of oceanic Engineering, 33(2), 103-122.
- Gonzalez, L. A. (2004). Design, modelling and control of an autonomous underwater vehicle. BE Thesis, The University of Western Australia, Australia.
- Healey, A. J., & Good, M. R. (1992). The NPS AUVII Autonomous Underwater Vehicle Testbed: Design and Experimental Verification. Naval Engineers Journal, 104(3), 191-202.
- Kimber, N., & Scrimshaw, K. (1994). Hydrodynamic testing of a 3/4 scale autosub model. Paper presented at the Oceanology International.
- Morgansen, K. A., Triplett, B. I., & Klein, D. J. (2007). Geometric methods for modeling and control of free-swimming fin-actuated underwater vehicles. IEEE Transactions on Robotics, 23(6), 1184-1199.
- Omerdic, E., & Roberts, G. (2004). Thruster fault diagnosis and accommodation for open-frame underwater vehicles. Control engineering practice, 12(12), 1575-1598.
- Stutters, L., Liu, H., Tiltman, C., & Brown, D. J. (2008). Navigation technologies for autonomous underwater vehicles. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(4), 581-589.
- von Alt, C. (2003). ’Autonomous Underwater Vehicles’, Woods Hole Oceanographic Institution. In: Technical Report, March.
- Wu, C.-J. (2018). 6-DoF Modelling and Control of a Remotely Operated Vehicle. Flinders University, College of Science and Engineering.,
- Wynn, R. B., Huvenne, V. A., Le Bas, T. P., Murton, B. J., Connelly, D. P., Bett, B. J., . . . Parsons, D. R. (2014). Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Marine Geology, 352, 451-468.