Research Article
BibTex RIS Cite

Alternatif Yakıt Biyogaz Potansiyelinin Model Bir İlçe için Araştırılması

Year 2021, , 192 - 197, 31.08.2021
https://doi.org/10.31590/ejosat.893481

Abstract

Dünya nüfusunun artışı ve teknolojik gelişimler sebebiyle ortaya çıkan gıda ve enerji talebini karşılayabilmek için araştırmalar yoğun şekilde devam etmektedir. Enerji ihtiyacını giderebilmek için arz doğal gaz, kömür, petrol gibi fosil kaynaklı yakıtlardan ya da nükleer kaynaklardan sağlanmaktadır. Fosil kaynakların miktarının sınırlı olması ve oluşturduğu sera gazı etkisi sebebiyle alternatif enerji araştırmaların birçoğu biyodizel, biyogaz, rüzgâr, güneş enerjisi gibi yenilenebilir yakıtlar üzerinde yoğunlaşmıştır. Sera gazı etkisini oluşturan gazlar içerisinde karbondioksit ile birlikte metanojen bakterileri tarafından üretilen metan(bataklık-biyogaz) gazları önemli bir yer tutmaktadır. Uygulanabilirliği, sürdürülebilirliği, düşük üretim maliyeti, sera gazı oluşumunu azaltması ve süreç sonucu elde edilen biyokütlenin organik gübre olarak kullanılabilmesinden dolayı biyogaz üretimi alternatif yakıtlar içerisinde ön plana çıkmaktadır. Bu amaçla, birçok ülkede biyogaz üretimi ve buna bağlı oluşan biyogübrenin tarımda kullanımı artarak devam ederken ülkemizin bu alandaki potansiyelinin yeterince belirlenemediği görülmektedir.
Yapılan bu çalışmada ülkemizin bir ilçesi model olarak incelenerek toplam biyokütle potansiyeli belirlenmiş ve biyokütle potansiyeline bağlı olarak elde edilebilecek biyoenerji miktarı araştırılmıştır. Elde edilen sonuçlar incelendiğinde, model ilçenin biyokütle potansiyelinin ilçenin enerji ihtiyacının üzerinde olduğu ve biyogaz üretimi sonrası oluşacak biyogübrenin kullanımı ile toprak kirliliğine sebep olan inorganik gübre kullanımının azaltılabileceği görülmüştür.

References

  • (TÜİK), T. (2020). Hayvansal Üretim İstatistikleri. TÜİK, 33874
  • Abdallah, M., Shanableh, A., Adghim, M., Ghenai, C., & Saad, S. (2018). Biogas Production from Different Types of Cow Manure. Advances in Science and Engineering Technology International Conferences (ASET). doi:10.1109/ICASET.2018.8376791
  • Abubaker, J., Risberg, K., & Pell, M. (2012). Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities. Applied energy, 99. doi:http://dx.doi.org/10.1016/j.apenergy.2012.04.050
  • Agency, E. (2020). Energy in Sweden 2020 An overview.
  • Agency(EPA), E. P. (2021). Understanding Global Warming Potentials. Retrieved from https://www.epa.gov/ghgemissions/understanding-global-warming-potentials#:~:text=Methane%20(CH4)%20is%20estimated,uses%20a%20different%20value.).
  • Alfa, I. M., Dahunsi, S. O., Iorhemen, O. T., Okafor, C. C., & Ajayi, S. A. (2014). Comparative evaluation of biogas production from Poultry droppings, Cow dung and Lemon grass. Bioresource Technology 157. doi:http://dx.doi.org/10.1016/j.biortech.2014.01.108
  • Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., & Gruber, L. (2007). Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agriculture, Ecosystems and Environment, 118. doi:doi:10.1016/j.agee.2006.05.007
  • Association, S. G. (2021). Basic Data on Biogas. Swedish Gas Technology Centre: Basic Data on Biogas.
  • Balussou, D. (2018). An analysis of current and future electricity production from biogas in Germany. Karlsruher Instituts für Technologie (KIT).
  • Bassey, A., James, E., Bassey, A., E., A., & E., E. M. (2013). Four potentials of biogas yield from cow dung-CD. European Journal of Experimental Biology, 3(3).
  • Battista, F., Fino, D., & Mancini, G. (2016). Optimization of biogas production from coffee production waste. Bioresource Technology 200, 884–890. doi:http://dx.doi.org/10.1016/j.biortech.2015.11.020
  • Benato, A., & Macor, A. (2019). Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions. mdpi energy, 12, 979. doi:doi:10.3390/en12060979
  • Bernard, S. S., Srinivasan, T., Suresh, G., Paul, A. I., Fowzan, K. M., & Kishore, V. A. (2020). Production of biogas from anaerobic digestion of vegetable waste and cow dung. Materials Today: Proceedings, 33. doi:https://doi.org/10.1016/j.matpr.2020.07.129
  • Boreka, K., & Romaniuk, W. (2020). Biogas Installation for Harvesting Energy and Unitlization of Natural Fertilisers. sciendo Agricultural Engineering, 24(1), 1-14. doi:DOI: 10.1515/agriceng-2020-0001
  • Cestonaro, T., Costa, M. S. S. d. M., Costa, L. A. d. M., Rozatti, M. A. T., Pereira, D. C., Lorin, H. E. F., & Carneiro, L. J. (2015). The anaerobic co-digestion of sheep bedding and P50% cattle manure increases biogas production and improves biofertilizer quality. waste management, 46, 612-618. doi:http://dx.doi.org/10.1016/j.wasman.2015.08.040
  • Chuanchai, A., & Ramaraj, R. (2018). Sustainability assessment of biogas production from buffalo grass and dung: biogas purification and bio‑fertilizer. Springer Biotech, 8(151), 2-11. doi:https://doi.org/10.1007/s13205-018-1170-x
  • Chukeaw, T., Tiyathaa, W., Jaroenpanona, K., Witoon, T., Kongkachuichay, P., Chareonpanich, M., Seubsai, A. (2021). Synthesis of value-added hydrocarbons via oxidative coupling of methane over MnTiO3-Na2WO4/SBA-15 catalysts. Process Safety and Environmental Protection, 148, 1110–1122. doi:https://doi.org/10.1016/j.psep.2021.02.030
  • Comino, E., Rosso, M., & Riggio, V. (2009). Development of a pilot scale anaerobic digester for biogas production from cow manure and whey mix. Bioresource Technology, 100, 5072–5078. doi:doi:10.1016/j.biortech.2009.05.059
  • Cucchiella, F., Dadamo, I., & Gastaldi, M. (2019). An economic analysis of biogas-biomethane chain from animal residues in Italy. Journal of Cleaner Production 230, 888-897. doi:https://doi.org/10.1016/j.jclepro.2019.05.116
  • Eyl-Mazzega, M.-A., & Mathieu, C. (2019). Biogas and Biomethane in Europe: Lessons from Denmark, Germany and Italy. Retrieved from https://www.ifri.org/sites/default/files/atoms/files/mathieu_eyl-mazzega_biomethane_2019.pdf
  • Feiz, R., Johansson, M., Lindkvist, E., Moestedt, J., Påledal, S. N., & Svensson, N. (2020). Key performance indicators for biogas productiondmethodological insights on the life-cycle analysis of biogas production from sourceseparated food waste. Energy, 200, 117462. doi:https://doi.org/10.1016/j.energy.2020.117462
  • Ferreira, S. F., Buller, L. S., Berni, M., & Forster-Carneiro, T. (2019). Environmental impact assessment of end-uses of biomethane. Journal of Cleaner Production 230, 613e621. doi:https://doi.org/10.1016/j.jclepro.2019.05.034
  • Gu, L., Zhang, Y.-X., Wang, J.-Z., Chen, G., & Battye, H. (2016). Where is the future of China’s biogas? Review, forecast, and policy implications. Pet. Sci. Springer, 13, 604–624. doi:DOI 10.1007/s12182-016-0105-6
  • Hasan, M. A., Putra, Z. A., Bilad, M. R., Sapiaa, N. A. H., Wirzal, M. D. H., & Tijani, M. M. (2018). Biogas production from chicken food waste and cow manure via multi-stages anaerobic digestion. Proceedings of the 3rd International Conference on Applied Science and Technology (ICAST’18). doi:https://doi.org/10.1063/1.5055413
  • Havrysh, V., Kalinichenko, A., Mentel, G., & Olejarz, T. (2020). Commercial Biogas Plants: Lessons for Ukraine. mdpi energies, 13, 2668. doi:doi:10.3390/en13102668
  • Hidayati, S., Utomo, T. P., Suroso, E., & Maktub, Z. A. (2019). Technical and technology aspect assessment of biogas agroindustry from cow manure: case study on cattle livestock industry in South Lampung District. International Conference on Green Agro-industry and Bioeconomy, 230(1). doi:doi:10.1088/1755-1315/230/1/012072
  • Huang, Q., Yu, Y., Wan, Y., Wang, Q., Luo, Z., Qiao, Y., Li, H. (2018). Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.). Journal of Environmental Management (215), 13-21. doi:https://doi.org/10.1016/j.jenvman.2018.03.036
  • India, B. P. i. (2021). BIOGAS:A FIT OPTION FOR RURAL ENERGY. Retrieved from https://web.iitd.ac.in/~vkvijay/files/Biogas%20technology.pdf
  • Kalinichenko, A., & Havrysh, V. (2019). Feasibility study of biogas project development: technology maturity, feedstock, and utilization pathway. Polish Academy of Sciences, 45(1), 68. doi:DOI 10.24425/aep.2019.126423
  • Khalil, M. A. K. (2003). Atmospheric Methane Its Role in the Global Environment. Agricultural and Forest Meteorology, 126, 125–126. doi:doi:10.1016/j.agrformet.2003.09.004
  • Kushkevych, I., Vítězová, M., Vítěz, T., & Bartoš, M. (2017). Production of biogas: relationship between methanogenic and sulfate-reducing microorganisms. De Gruyter, 12, 82–91. doi:DOI 10.1515/biol-2017-0009
  • Lanari, D., & Franci, C. (1998). Biogas production from solid wastes removed from fiih farm effluents. Aquatic Living Resources, 11(4), 289-295. doi:https://doi.org/10.1016/S0990-7440(98)80014-4
  • Li, L., Xu, J., Wang, H., Liu, X., & Zhang, D. (2020). Study of the performance of biogas production by mixed fermentation of cow dung, deer manure, and mushroom fungus. Energy Sci Engineering, 8. doi:DOI: 10.1002/ese3.528
  • Lindsey, R. (2021). Climate Change: Atmospheric Carbon Dioxide.
  • Lukehurst, C. T., Frost, P., & Seadi, T. A. (2010). Utilisation of digestate from biogas plants as biofertiliser. IEA.
  • Ma, Y., Yin, Y., & Liu, Y. (2017). New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer. Bioresource Technology 241, 448–453. doi:http://dx.doi.org/10.1016/j.biortech.2017.05.154
  • Malik, W., Mohan, C., & Annachhatre, A. P. (2020). Community based biogas plant utilizing food waste and cow dung. Materials Today: Proceedings 28, 1910-1915. doi:https://doi.org/10.1016/j.matpr.2020.05.312
  • Meyer, A. K. P., Ehimen, E. A., & Holm-Nielsen, J. B. (2018). Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy 111, 154-164. doi:doi.org/10.1016/j.biombioe.2017.05.013
  • Montingelli, M. E., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961–972. doi:http://dx.doi.org/10.1016/j.rser.2014.11.052
  • Murray, B. C., Galik, C. S., & Vegh, T. (2014). An Assessment of Market Potential in a Carbon-Constrained Future. Retrieved from
  • Niskanen, J., & Magnusson, D. (2021). Understanding upscaling and stagnation of farm-based biogas production in Sweden through transitional and farming logics. Journal of Cleaner Production, 279, 123235. doi:https://doi.org/10.1016/j.jclepro.2020.123235
  • Panuccio, M. R., Attina, E., Basile, C., Mallamaci, C., & Muscolo, A. (2016). Use of Recalcitrant Agriculture Wastes to Produce Biogas and Feasible Biofertilizer. Waste Biomass Volar, 7, 267. doi:DOI 10.1007/s12649-015-9445-5
  • Patel, R. P., Nagababu, G., Kumar, S. V. V. A., M., S., & Kachhwah, S. S. (2020). Wave resource assessment and wave energy exploitation along the Indian coast. Ocean Engineering 217, 107834. doi:https://doi.org/10.1016/j.oceaneng.2020.107834
  • Pavi, S., Kramer, L. E., Gomes, L. P., & Miranda, L. A. S. (2017). Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresource Technology, 228, 362-367. doi:http://dx.doi.org/10.1016/j.biortech.2017.01.003
  • Pochwatka, P., Kowalczyk-Ju´sko, A., Sołowiej, P., Wawrzyniak, A., & Dach, J. (2020). Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects. Energies, 13, 6058. doi:doi:10.3390/en13226058
  • Quintanar-Orozco, E. T., Vázquez-Rodríguez, G. A., Beltrán-Hernández, R. I., Lucho-Constantino, C. A., Coronel-Olivares, C., Montiel, S. G., & Islas-Valdez, S. (2018). Enhancement of the biogas and biofertilizer production from Opuntia heliabravoana Scheinvar. Environmental Science and Pollution Research, 25, 28403–28412. doi:https://doi.org/10.1007/s11356-018-2845-x
  • Quiroz, M., Varnero, M. T., Cuevas, J. G., & Sierra, H. (2021). Cactus pear (Opuntia ficus-indica) in areas with limited rainfall for the production of biogas and biofertilizer. Journal of Cleaner Production 289, 125839. doi:https://doi.org/10.1016/j.jclepro.2021.125839
  • Raja, I. A., & Wazir, S. (2017). Biogas Production: The Fundamental Processes. Universal Journal of Engineering Science, 5(2), 29-37. doi:DOI: 10.13189/ujes.2017.050202
  • Ren, S., Dou, B., & Ning, F. (2020). Geothermal energy exploitation from depleted high-temperature gas reservoirs by recycling CO2: the superiority and existing problems. Geoscience Frontiers, pre proof. doi:https://doi.org/10.1016/j.gsf.2020.08.014
  • Rudreshwar, K., & Balakrishnan, B. J. (2020). Mini review on recent progress toward sustainable production of biodiesel from biomass. Materials Today: Proceedings doi:https://doi.org/10.1016/j.matpr.2020.08.444
  • Sarıbıyık, O. Y., Özcanlı, M., Serin, H., Serin, S., & Aydın, K. (2010). Biodiesel Production from Ricinus Communis Oil and Its Blends with Soybean Biodiesel. Strojniški vestnik - Journal of Mechanical Engineering, 56(12), 811-816.
  • Scarlat, N., Dallemand, J.-F., & Fahl, F. (2018). Biogas: Developments and perspectives in Europe. Renewable Energy 129, 457-472. doi:https://doi.org/10.1016/j.renene.2018.03.006
  • Scholwin, F., Grope, J., Clinkscales, A., Boshell, F., Saygin, D., Salgado, A., & Seleem, A. (2018). Biogas for Road Vehicles Technology Brief. Retrieved from
  • Selvankumar, T., Sudhakar, C., Selvam, K., Aroulmoji, V., Govindaraju, M., Sivakumar, N., & Govarthanan, M. (2017). Process optimization of biogas energy production from cow dung with alkali pre-treated coffee pulp. Biotech, 7(254). doi:DOI 10.1007/s13205-017-0884-5
  • Sharma, S., Kundu, A., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2020). Sustainable environmental management and related biofuel technologies. Journal of Environmental Management 273, 111096. doi:https://doi.org/10.1016/j.jenvman.2020.111096
  • Siddique, M. N. I., Khalid, Z. B., & Ibrahim, M. Z. B. (2020). Effect of additional nutrients on bio-methane production from anaerobic digestion of farming waste: Feasibility & Fertilizer recovery. Journal of Environmental Chemical Engineering, 8, 103569. doi:https://doi.org/10.1016/j.jece.2019.103569
  • Sif, B. S., Kofoed-Wiuff, Herrmann, A., Tengbjerg, I., & Bernard, K. K. (2014). Experiences with biogas in Denmark. Retrieved from
  • Spence, A., Madrigal, E. B., Patilb, R., & Fernándeza, Y. B. (2019). Evaluation of anaerobic digestibility of energy crops and agricultural byproducts. Bioresource Technology Reports, 243–250. doi:https://doi.org/10.1016/j.biteb.2018.11.004
  • Stolarski, M. J., Warminski, K., Krzyzaniak, M., Ziety, E. O., & Stachowicz, P. (2020). Energy consumption and heating costs for a detached house over a 12-year period e Renewable fuels versus fossil fuels. Energy, 204, 117952. doi:https://doi.org/10.1016/j.energy.2020.117952
  • Thompson, T. M., Young, B. R., & Baroutian, S. (2021). Enhancing biogas production from caribbean pelagic Sargassum utilising hydrothermal pretreatment and anaerobic co-digestion with food waste. Chemosphere, 275, 130035. doi:https://doi.org/10.1016/j.chemosphere.2021.130035
  • Tsigkou, K., Zagklis, D., Tsafrakidou, P., Zapanti, P., Manthos, G., Karamitou, K., . . . Kornaros, M. (2021). Expired food products and used disposable adult nappies mesophilic anaerobic co-digestion: Biochemical methane potential, feedstock pretreatment and two-stage system performance. Renewable Energy, 168, 309-318. doi:https://doi.org/10.1016/j.renene.2020.12.062
  • Valentinuzzi, F., Cavani, L., Porfido, C., Terzano, R., Pii, Y., Cesco, S., Mimmo, T. (2020). The fertilising potential of manure-based biogas fermentation residues: pelleted vs. liquid digestate. Heliyon, 6, e03325. doi:https://doi.org/10.1016/j.heliyon.2020.e03325
  • Winquist, E., Rikkonen, P., Pyysiainen, J., & Varho, V. (2019). Is biogas an energy or a sustainability product? - Business opportunities in the Finnish biogas branch. Journal of Cleaner Production 233, 1344-1354. doi:https://doi.org/10.1016/j.jclepro.2019.06.181
  • Xue, S., Wang, Y., Lyuc, X., Zhao, N., Song, J., Wang, X., & Yang, G. (2020). Interactive effects of carbohydrate, lipid, protein composition and carbon/ nitrogen ratio on biogas production of different food wastes. Bioresource Technology, 312, 123566. doi:https://doi.org/10.1016/j.biortech.2020.123566
  • Yin, C., Shen, Y., Yu, Y., Yuan, H., Lou, Z., & Zhu, N. (2019). In-situ biogas upgrading by a stepwise addition of ash additives: Methanogen adaption and CO2 sequestration. Bioresource Technology, 282, 1-8. doi:https://doi.org/10.1016/j.biortech.2019.02.110
  • Yohaness, M. T. (2010). Biogas potential from cow manure – Influence of diet. (Master), Swedish University, (ISSN 1101-8151)
  • Zhang, Q. L. Y., Mieghem, A. V., Chen, Y.-C., Yu, N., Yang, Y., & Yin, H. (2020). Design and experiment of a sun-powered smart building envelope with automatic control. Energy & Buildings, 223, 110173. doi:https://doi.org/10.1016/j.enbuild.2020.110173
  • Zhang, Z., Zhang, G., Li, W., Li, C., & Xu, G. (2016). Enhanced biogas production from sorghum stem by co-digestion with cow manure. internationa l j ournal of hydrogen energy, 41. doi:http://dx.doi.org/10.1016/j.ijhydene.2016.02.042
  • Zhoua, B., Or, S. W., Chan, K. W., Duan, H., Wu, Q., Wang, H., & Meng, Y. (2021). Short-term prediction of wind power and its ramp events based on semisupervised generative adversarial network. Electrical Power and Energy Systems 125, 106411. doi:https://doi.org/10.1016/j.ijepes.2020.106411

The Investigation of the Alternative Fuel Biogas Potential for Model Town

Year 2021, , 192 - 197, 31.08.2021
https://doi.org/10.31590/ejosat.893481

Abstract

The investigations have been intensively continuing for responding of energy and food demand depending on the world population increase and the development of the industrial progression. The energy necessities eliminate by using fossil fuels based sources such as natural gas, coal and petrol. However, the amount of the fossil fuels is limited and they create the green houses gas problems, therefore, many of the researches have been focusing on new sustainable alternative energy sources, such as wind power, biodiesel, biogas, solar and biomass. The methane which is released by the methanogen bacteria is occupy a places in green gases which are carbon dioxide and methane. Biogas as an alternative biofuel has higher impact in alternative fuels because of its applicability, sustainability, low production cost, keep the greenhouse gases in balance and produces bio-fertilizer after digestion processes. In those purposes, the biogas investment and investigation increases for all over the world however the potential of biomass conversion and the examination for bio gas production have paid less concern in our country.
In this study, the potential biomass and the amount of the biogas depending on the biomass potential have been investigated on one of the model town, Şiran in Gümüşhane. According to obtained results, it is seen that the biomass potential and the amount of the biogas production are highly enough for model town for natural gas demand and using bio fertilizer which is produced after digestion of biomass can be decreased by the utilization of the synthetic inorganic fertilizer, causing for soil pollution.

References

  • (TÜİK), T. (2020). Hayvansal Üretim İstatistikleri. TÜİK, 33874
  • Abdallah, M., Shanableh, A., Adghim, M., Ghenai, C., & Saad, S. (2018). Biogas Production from Different Types of Cow Manure. Advances in Science and Engineering Technology International Conferences (ASET). doi:10.1109/ICASET.2018.8376791
  • Abubaker, J., Risberg, K., & Pell, M. (2012). Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities. Applied energy, 99. doi:http://dx.doi.org/10.1016/j.apenergy.2012.04.050
  • Agency, E. (2020). Energy in Sweden 2020 An overview.
  • Agency(EPA), E. P. (2021). Understanding Global Warming Potentials. Retrieved from https://www.epa.gov/ghgemissions/understanding-global-warming-potentials#:~:text=Methane%20(CH4)%20is%20estimated,uses%20a%20different%20value.).
  • Alfa, I. M., Dahunsi, S. O., Iorhemen, O. T., Okafor, C. C., & Ajayi, S. A. (2014). Comparative evaluation of biogas production from Poultry droppings, Cow dung and Lemon grass. Bioresource Technology 157. doi:http://dx.doi.org/10.1016/j.biortech.2014.01.108
  • Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., & Gruber, L. (2007). Biogas production from maize and dairy cattle manure—Influence of biomass composition on the methane yield. Agriculture, Ecosystems and Environment, 118. doi:doi:10.1016/j.agee.2006.05.007
  • Association, S. G. (2021). Basic Data on Biogas. Swedish Gas Technology Centre: Basic Data on Biogas.
  • Balussou, D. (2018). An analysis of current and future electricity production from biogas in Germany. Karlsruher Instituts für Technologie (KIT).
  • Bassey, A., James, E., Bassey, A., E., A., & E., E. M. (2013). Four potentials of biogas yield from cow dung-CD. European Journal of Experimental Biology, 3(3).
  • Battista, F., Fino, D., & Mancini, G. (2016). Optimization of biogas production from coffee production waste. Bioresource Technology 200, 884–890. doi:http://dx.doi.org/10.1016/j.biortech.2015.11.020
  • Benato, A., & Macor, A. (2019). Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions. mdpi energy, 12, 979. doi:doi:10.3390/en12060979
  • Bernard, S. S., Srinivasan, T., Suresh, G., Paul, A. I., Fowzan, K. M., & Kishore, V. A. (2020). Production of biogas from anaerobic digestion of vegetable waste and cow dung. Materials Today: Proceedings, 33. doi:https://doi.org/10.1016/j.matpr.2020.07.129
  • Boreka, K., & Romaniuk, W. (2020). Biogas Installation for Harvesting Energy and Unitlization of Natural Fertilisers. sciendo Agricultural Engineering, 24(1), 1-14. doi:DOI: 10.1515/agriceng-2020-0001
  • Cestonaro, T., Costa, M. S. S. d. M., Costa, L. A. d. M., Rozatti, M. A. T., Pereira, D. C., Lorin, H. E. F., & Carneiro, L. J. (2015). The anaerobic co-digestion of sheep bedding and P50% cattle manure increases biogas production and improves biofertilizer quality. waste management, 46, 612-618. doi:http://dx.doi.org/10.1016/j.wasman.2015.08.040
  • Chuanchai, A., & Ramaraj, R. (2018). Sustainability assessment of biogas production from buffalo grass and dung: biogas purification and bio‑fertilizer. Springer Biotech, 8(151), 2-11. doi:https://doi.org/10.1007/s13205-018-1170-x
  • Chukeaw, T., Tiyathaa, W., Jaroenpanona, K., Witoon, T., Kongkachuichay, P., Chareonpanich, M., Seubsai, A. (2021). Synthesis of value-added hydrocarbons via oxidative coupling of methane over MnTiO3-Na2WO4/SBA-15 catalysts. Process Safety and Environmental Protection, 148, 1110–1122. doi:https://doi.org/10.1016/j.psep.2021.02.030
  • Comino, E., Rosso, M., & Riggio, V. (2009). Development of a pilot scale anaerobic digester for biogas production from cow manure and whey mix. Bioresource Technology, 100, 5072–5078. doi:doi:10.1016/j.biortech.2009.05.059
  • Cucchiella, F., Dadamo, I., & Gastaldi, M. (2019). An economic analysis of biogas-biomethane chain from animal residues in Italy. Journal of Cleaner Production 230, 888-897. doi:https://doi.org/10.1016/j.jclepro.2019.05.116
  • Eyl-Mazzega, M.-A., & Mathieu, C. (2019). Biogas and Biomethane in Europe: Lessons from Denmark, Germany and Italy. Retrieved from https://www.ifri.org/sites/default/files/atoms/files/mathieu_eyl-mazzega_biomethane_2019.pdf
  • Feiz, R., Johansson, M., Lindkvist, E., Moestedt, J., Påledal, S. N., & Svensson, N. (2020). Key performance indicators for biogas productiondmethodological insights on the life-cycle analysis of biogas production from sourceseparated food waste. Energy, 200, 117462. doi:https://doi.org/10.1016/j.energy.2020.117462
  • Ferreira, S. F., Buller, L. S., Berni, M., & Forster-Carneiro, T. (2019). Environmental impact assessment of end-uses of biomethane. Journal of Cleaner Production 230, 613e621. doi:https://doi.org/10.1016/j.jclepro.2019.05.034
  • Gu, L., Zhang, Y.-X., Wang, J.-Z., Chen, G., & Battye, H. (2016). Where is the future of China’s biogas? Review, forecast, and policy implications. Pet. Sci. Springer, 13, 604–624. doi:DOI 10.1007/s12182-016-0105-6
  • Hasan, M. A., Putra, Z. A., Bilad, M. R., Sapiaa, N. A. H., Wirzal, M. D. H., & Tijani, M. M. (2018). Biogas production from chicken food waste and cow manure via multi-stages anaerobic digestion. Proceedings of the 3rd International Conference on Applied Science and Technology (ICAST’18). doi:https://doi.org/10.1063/1.5055413
  • Havrysh, V., Kalinichenko, A., Mentel, G., & Olejarz, T. (2020). Commercial Biogas Plants: Lessons for Ukraine. mdpi energies, 13, 2668. doi:doi:10.3390/en13102668
  • Hidayati, S., Utomo, T. P., Suroso, E., & Maktub, Z. A. (2019). Technical and technology aspect assessment of biogas agroindustry from cow manure: case study on cattle livestock industry in South Lampung District. International Conference on Green Agro-industry and Bioeconomy, 230(1). doi:doi:10.1088/1755-1315/230/1/012072
  • Huang, Q., Yu, Y., Wan, Y., Wang, Q., Luo, Z., Qiao, Y., Li, H. (2018). Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.). Journal of Environmental Management (215), 13-21. doi:https://doi.org/10.1016/j.jenvman.2018.03.036
  • India, B. P. i. (2021). BIOGAS:A FIT OPTION FOR RURAL ENERGY. Retrieved from https://web.iitd.ac.in/~vkvijay/files/Biogas%20technology.pdf
  • Kalinichenko, A., & Havrysh, V. (2019). Feasibility study of biogas project development: technology maturity, feedstock, and utilization pathway. Polish Academy of Sciences, 45(1), 68. doi:DOI 10.24425/aep.2019.126423
  • Khalil, M. A. K. (2003). Atmospheric Methane Its Role in the Global Environment. Agricultural and Forest Meteorology, 126, 125–126. doi:doi:10.1016/j.agrformet.2003.09.004
  • Kushkevych, I., Vítězová, M., Vítěz, T., & Bartoš, M. (2017). Production of biogas: relationship between methanogenic and sulfate-reducing microorganisms. De Gruyter, 12, 82–91. doi:DOI 10.1515/biol-2017-0009
  • Lanari, D., & Franci, C. (1998). Biogas production from solid wastes removed from fiih farm effluents. Aquatic Living Resources, 11(4), 289-295. doi:https://doi.org/10.1016/S0990-7440(98)80014-4
  • Li, L., Xu, J., Wang, H., Liu, X., & Zhang, D. (2020). Study of the performance of biogas production by mixed fermentation of cow dung, deer manure, and mushroom fungus. Energy Sci Engineering, 8. doi:DOI: 10.1002/ese3.528
  • Lindsey, R. (2021). Climate Change: Atmospheric Carbon Dioxide.
  • Lukehurst, C. T., Frost, P., & Seadi, T. A. (2010). Utilisation of digestate from biogas plants as biofertiliser. IEA.
  • Ma, Y., Yin, Y., & Liu, Y. (2017). New insights into co-digestion of activated sludge and food waste: Biogas versus biofertilizer. Bioresource Technology 241, 448–453. doi:http://dx.doi.org/10.1016/j.biortech.2017.05.154
  • Malik, W., Mohan, C., & Annachhatre, A. P. (2020). Community based biogas plant utilizing food waste and cow dung. Materials Today: Proceedings 28, 1910-1915. doi:https://doi.org/10.1016/j.matpr.2020.05.312
  • Meyer, A. K. P., Ehimen, E. A., & Holm-Nielsen, J. B. (2018). Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy 111, 154-164. doi:doi.org/10.1016/j.biombioe.2017.05.013
  • Montingelli, M. E., Tedesco, S., & Olabi, A. G. (2015). Biogas production from algal biomass: A review. Renewable and Sustainable Energy Reviews, 43, 961–972. doi:http://dx.doi.org/10.1016/j.rser.2014.11.052
  • Murray, B. C., Galik, C. S., & Vegh, T. (2014). An Assessment of Market Potential in a Carbon-Constrained Future. Retrieved from
  • Niskanen, J., & Magnusson, D. (2021). Understanding upscaling and stagnation of farm-based biogas production in Sweden through transitional and farming logics. Journal of Cleaner Production, 279, 123235. doi:https://doi.org/10.1016/j.jclepro.2020.123235
  • Panuccio, M. R., Attina, E., Basile, C., Mallamaci, C., & Muscolo, A. (2016). Use of Recalcitrant Agriculture Wastes to Produce Biogas and Feasible Biofertilizer. Waste Biomass Volar, 7, 267. doi:DOI 10.1007/s12649-015-9445-5
  • Patel, R. P., Nagababu, G., Kumar, S. V. V. A., M., S., & Kachhwah, S. S. (2020). Wave resource assessment and wave energy exploitation along the Indian coast. Ocean Engineering 217, 107834. doi:https://doi.org/10.1016/j.oceaneng.2020.107834
  • Pavi, S., Kramer, L. E., Gomes, L. P., & Miranda, L. A. S. (2017). Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresource Technology, 228, 362-367. doi:http://dx.doi.org/10.1016/j.biortech.2017.01.003
  • Pochwatka, P., Kowalczyk-Ju´sko, A., Sołowiej, P., Wawrzyniak, A., & Dach, J. (2020). Biogas Plant Exploitation in a Middle-Sized Dairy Farm in Poland: Energetic and Economic Aspects. Energies, 13, 6058. doi:doi:10.3390/en13226058
  • Quintanar-Orozco, E. T., Vázquez-Rodríguez, G. A., Beltrán-Hernández, R. I., Lucho-Constantino, C. A., Coronel-Olivares, C., Montiel, S. G., & Islas-Valdez, S. (2018). Enhancement of the biogas and biofertilizer production from Opuntia heliabravoana Scheinvar. Environmental Science and Pollution Research, 25, 28403–28412. doi:https://doi.org/10.1007/s11356-018-2845-x
  • Quiroz, M., Varnero, M. T., Cuevas, J. G., & Sierra, H. (2021). Cactus pear (Opuntia ficus-indica) in areas with limited rainfall for the production of biogas and biofertilizer. Journal of Cleaner Production 289, 125839. doi:https://doi.org/10.1016/j.jclepro.2021.125839
  • Raja, I. A., & Wazir, S. (2017). Biogas Production: The Fundamental Processes. Universal Journal of Engineering Science, 5(2), 29-37. doi:DOI: 10.13189/ujes.2017.050202
  • Ren, S., Dou, B., & Ning, F. (2020). Geothermal energy exploitation from depleted high-temperature gas reservoirs by recycling CO2: the superiority and existing problems. Geoscience Frontiers, pre proof. doi:https://doi.org/10.1016/j.gsf.2020.08.014
  • Rudreshwar, K., & Balakrishnan, B. J. (2020). Mini review on recent progress toward sustainable production of biodiesel from biomass. Materials Today: Proceedings doi:https://doi.org/10.1016/j.matpr.2020.08.444
  • Sarıbıyık, O. Y., Özcanlı, M., Serin, H., Serin, S., & Aydın, K. (2010). Biodiesel Production from Ricinus Communis Oil and Its Blends with Soybean Biodiesel. Strojniški vestnik - Journal of Mechanical Engineering, 56(12), 811-816.
  • Scarlat, N., Dallemand, J.-F., & Fahl, F. (2018). Biogas: Developments and perspectives in Europe. Renewable Energy 129, 457-472. doi:https://doi.org/10.1016/j.renene.2018.03.006
  • Scholwin, F., Grope, J., Clinkscales, A., Boshell, F., Saygin, D., Salgado, A., & Seleem, A. (2018). Biogas for Road Vehicles Technology Brief. Retrieved from
  • Selvankumar, T., Sudhakar, C., Selvam, K., Aroulmoji, V., Govindaraju, M., Sivakumar, N., & Govarthanan, M. (2017). Process optimization of biogas energy production from cow dung with alkali pre-treated coffee pulp. Biotech, 7(254). doi:DOI 10.1007/s13205-017-0884-5
  • Sharma, S., Kundu, A., Basu, S., Shetti, N. P., & Aminabhavi, T. M. (2020). Sustainable environmental management and related biofuel technologies. Journal of Environmental Management 273, 111096. doi:https://doi.org/10.1016/j.jenvman.2020.111096
  • Siddique, M. N. I., Khalid, Z. B., & Ibrahim, M. Z. B. (2020). Effect of additional nutrients on bio-methane production from anaerobic digestion of farming waste: Feasibility & Fertilizer recovery. Journal of Environmental Chemical Engineering, 8, 103569. doi:https://doi.org/10.1016/j.jece.2019.103569
  • Sif, B. S., Kofoed-Wiuff, Herrmann, A., Tengbjerg, I., & Bernard, K. K. (2014). Experiences with biogas in Denmark. Retrieved from
  • Spence, A., Madrigal, E. B., Patilb, R., & Fernándeza, Y. B. (2019). Evaluation of anaerobic digestibility of energy crops and agricultural byproducts. Bioresource Technology Reports, 243–250. doi:https://doi.org/10.1016/j.biteb.2018.11.004
  • Stolarski, M. J., Warminski, K., Krzyzaniak, M., Ziety, E. O., & Stachowicz, P. (2020). Energy consumption and heating costs for a detached house over a 12-year period e Renewable fuels versus fossil fuels. Energy, 204, 117952. doi:https://doi.org/10.1016/j.energy.2020.117952
  • Thompson, T. M., Young, B. R., & Baroutian, S. (2021). Enhancing biogas production from caribbean pelagic Sargassum utilising hydrothermal pretreatment and anaerobic co-digestion with food waste. Chemosphere, 275, 130035. doi:https://doi.org/10.1016/j.chemosphere.2021.130035
  • Tsigkou, K., Zagklis, D., Tsafrakidou, P., Zapanti, P., Manthos, G., Karamitou, K., . . . Kornaros, M. (2021). Expired food products and used disposable adult nappies mesophilic anaerobic co-digestion: Biochemical methane potential, feedstock pretreatment and two-stage system performance. Renewable Energy, 168, 309-318. doi:https://doi.org/10.1016/j.renene.2020.12.062
  • Valentinuzzi, F., Cavani, L., Porfido, C., Terzano, R., Pii, Y., Cesco, S., Mimmo, T. (2020). The fertilising potential of manure-based biogas fermentation residues: pelleted vs. liquid digestate. Heliyon, 6, e03325. doi:https://doi.org/10.1016/j.heliyon.2020.e03325
  • Winquist, E., Rikkonen, P., Pyysiainen, J., & Varho, V. (2019). Is biogas an energy or a sustainability product? - Business opportunities in the Finnish biogas branch. Journal of Cleaner Production 233, 1344-1354. doi:https://doi.org/10.1016/j.jclepro.2019.06.181
  • Xue, S., Wang, Y., Lyuc, X., Zhao, N., Song, J., Wang, X., & Yang, G. (2020). Interactive effects of carbohydrate, lipid, protein composition and carbon/ nitrogen ratio on biogas production of different food wastes. Bioresource Technology, 312, 123566. doi:https://doi.org/10.1016/j.biortech.2020.123566
  • Yin, C., Shen, Y., Yu, Y., Yuan, H., Lou, Z., & Zhu, N. (2019). In-situ biogas upgrading by a stepwise addition of ash additives: Methanogen adaption and CO2 sequestration. Bioresource Technology, 282, 1-8. doi:https://doi.org/10.1016/j.biortech.2019.02.110
  • Yohaness, M. T. (2010). Biogas potential from cow manure – Influence of diet. (Master), Swedish University, (ISSN 1101-8151)
  • Zhang, Q. L. Y., Mieghem, A. V., Chen, Y.-C., Yu, N., Yang, Y., & Yin, H. (2020). Design and experiment of a sun-powered smart building envelope with automatic control. Energy & Buildings, 223, 110173. doi:https://doi.org/10.1016/j.enbuild.2020.110173
  • Zhang, Z., Zhang, G., Li, W., Li, C., & Xu, G. (2016). Enhanced biogas production from sorghum stem by co-digestion with cow manure. internationa l j ournal of hydrogen energy, 41. doi:http://dx.doi.org/10.1016/j.ijhydene.2016.02.042
  • Zhoua, B., Or, S. W., Chan, K. W., Duan, H., Wu, Q., Wang, H., & Meng, Y. (2021). Short-term prediction of wind power and its ramp events based on semisupervised generative adversarial network. Electrical Power and Energy Systems 125, 106411. doi:https://doi.org/10.1016/j.ijepes.2020.106411
There are 69 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Oguz Sarıbıyık 0000-0001-9735-8735

Publication Date August 31, 2021
Published in Issue Year 2021

Cite

APA Sarıbıyık, O. (2021). Alternatif Yakıt Biyogaz Potansiyelinin Model Bir İlçe için Araştırılması. Avrupa Bilim Ve Teknoloji Dergisi(25), 192-197. https://doi.org/10.31590/ejosat.893481