Research Article
BibTex RIS Cite

İyi Elektrokromik Performans Gösteren WO3 Nanoplakaların Çekirdeklenmiş FTO Üzerine Yeni Sentezi

Year 2021, , 718 - 722, 30.11.2021
https://doi.org/10.31590/ejosat.937476

Abstract

Tungsten trioksit (WO3), çeşitli elektrokromik cihazlarda uygulamalara sahiptir ve elektrokromik özelliklerini etkileyen çeşitli teknikler kullanılarak üretilir. Bu çalışmada, tungsten trioksit (WO3) nanoplakalar, tohumlanmış flor katkılı kalay oksit (FTO) cam altlıklar üzerinde hidrotermal teknik kullanılarak iki aşamalı bir kolay bir sentezleme süreci ile sentezlenmiştir. Yüksek gözenekli WO3 nanoplakalar hızlı ve kolay hidrotermal metot kullanılarak sentezlenmiştir. Öncesinde Döndürmeli Kaplama işlemi kullanılarak FTO üzerine bir çekirdek tabaka büyütülmüştür. WO3 nanoplakalar ise, 200 ˚C de 1 saat süreyle hidrotermal teknik kullanılarak çekirdek tabaka oluşturulmuş FTO camların üzerine hızlı bir şekilde sentezlenmiştir. Bu yapılar XRD, SEM, Kronoamperometri ve Döngüsel Voltametri teknikleri ile karakterize edilmiştir. WO3 nanoplakalar, monoklinik ve hegzagonal kristal fazın karışımı olan bir kristal yapısına sahiptirler. Filmin kristal parçacık boyutu sırasıyla (011) ve (200) en şiddetli monoklinik ve hegzagonal kristal fazları için 36 ve 53 nm olarak hesaplandı. WO3 nanoplakaların anahtarlanma süreleri renklenme için 1.28 s ve şeffaflaşma için 5.50 saniye olarak bulundu aynı zamanda difüzyon katsayısı da 4.2×10-10 cm2/s olarak belirlendi. Sonuç olarak yüksek gözenekliliğe sahip nanoplaka yapılar başarıyla elde edilmiş ve WO3 nanoplakalar, iyi bir kristal yapısı, yüksek difüzyon katsayısı ve kısa iyon ekleme süresi ile iyi elektrokromik performans göstermiştir.

References

  • B. Miao, W. Zeng, S. Hussain, Q. Mei, S. Xu, H. Zhang, Y. Li, T. Li, Large scale hydrothermal synthesis of monodisperse hexagonal WO3 nanowire and the growth mechanism, Mater. Lett. (2015). https://doi.org/10.1016/j.matlet.2015.02.020.
  • Z. Xie, L. Gao, B. Liang, X. Wang, G. Chen, Z. Liu, J. Chao, D. Chen, G. Shen, Fast fabrication of a WO 3·2H 2O thin film with improved electrochromic properties, J. Mater. Chem. (2012). https://doi.org/10.1039/c2jm33622g.
  • Z. Jiao, J. Wang, L. Ke, X. Liu, H.V. Demir, M.F. Yang, X.W. Sun, Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device, Electrochim. Acta. (2012). https://doi.org/10.1016/j.electacta.2011.12.069.
  • R.R. Kharade, K.R. Patil, P.S. Patil, P.N. Bhosale, Novel microwave assisted sol-gel synthesis (MW-SGS) and electrochromic performance of petal like h-WO 3 thin films, Mater. Res. Bull. (2012). https://doi.org/10.1016/j.materresbull.2012.03.025.
  • J. Livage, D. Ganguli, Sol-gel electrochromic coatings and devices: A review, Sol. Energy Mater. Sol. Cells. (2001). https://doi.org/10.1016/S0927-0248(00)00369-X.
  • P.M. Kadam, N.L. Tarwal, P.S. Shinde, R.S. Patil, H.P. Deshmukh, P.S. Patil, From beads-to-wires-to-fibers of tungsten oxide: Electrochromic response, Appl. Phys. A Mater. Sci. Process. (2009). https://doi.org/10.1007/s00339-009-5334-8.
  • C.C. Liao, F.R. Chen, J.J. Kai, WO3-x nanowires based electrochromic devices, Sol. Energy Mater. Sol. Cells. (2006). https://doi.org/10.1016/j.solmat.2005.07.009.
  • M. Meenakshi, V. Gowthami, P. Perumal, R. Sivakumar, C. Sanjeeviraja, Influence of dopant concentration on the electrochromic properties of tungsten oxide thin films, Electrochim. Acta. (2015). https://doi.org/10.1016/j.electacta.2015.05.187.
  • S. Lin, Y. Guo, X. Li, Y. Liu, Glycine acid-assisted green hydrothermal synthesis and controlled growth of WO3 nanowires, Mater. Lett. (2015). https://doi.org/10.1016/j.matlet.2015.03.099.
  • S. Salmaoui, F. Sediri, N. Gharbi, C. Perruchot, M. Jouini, Hexagonal hydrated tungsten oxide nanomaterials: Hydrothermalsynthesis and electrochemical properties, Electrochim. Acta. (2013). https://doi.org/10.1016/j.electacta.2013.07.086.
  • X.C. Song, Y.F. Zheng, E. Yang, Y. Wang, Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4, Mater. Lett. (2007). https://doi.org/10.1016/j.matlet.2006.12.055.
  • X. Wang, H. Zhang, L. Liu, W. Li, P. Cao, Controlled morphologies and growth direction of WO3 nanostructures hydrothermally synthesized with citric acid, Mater. Lett. (2014). https://doi.org/10.1016/j.matlet.2014.05.138.
  • J. Huang, X. Xu, C. Gu, G. Fu, W. Wang, J. Liu, Flower-like and hollow sphere-like WO 3 porous nanostructures: Selective synthesis and their photocatalysis property, Mater. Res. Bull. (2012). https://doi.org/10.1016/j.materresbull.2012.08.009.
  • J. Jia, X.D. Liu, X. Li, L. Cao, M. Zhang, B. Wu, X. Zhou, Effect of residual ions of hydrothermal precursors on the thickness and capacitive properties of WO3 nanoplates, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.153715.
  • J. Zhang, J.P. Tu, X.H. Xia, X.L. Wang, C.D. Gu, Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance, J. Mater. Chem. (2011). https://doi.org/10.1039/c0jm04361c.
  • J. Sungpanich, T. Thongtem, S. Thongtem, Photocatalysis of WO3 nanoplates synthesized by conventional-hydrothermal and microwave-hydrothermal methods and of commercial WO3 nanorods, J. Nanomater. (2014). https://doi.org/10.1155/2014/739251.
  • J. Chu, J. Lan, D. Lu, J. Ma, X. Wang, B. Wu, M. Gong, R. Zhang, S. Xiong, Facile fabrication of WO3 crystalline nanoplate on FTO glass and their application in electrochromism, Micro Nano Lett. (2016). https://doi.org/10.1049/mnl.2016.0199.
  • J.Y. Zheng, G. Song, J. Hong, T.K. Van, A.U. Pawar, D.Y. Kim, C.W. Kim, Z. Haider, Y.S. Kang, Facile fabrication of WO3 nanoplates thin films with dominant crystal facet of (002) for water splitting, Cryst. Growth Des. (2014). https://doi.org/10.1021/cg5012154.
  • X. Feng, Y. Chen, Z. Qin, M. Wang, L. Guo, Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting, ACS Appl. Mater. Interfaces. (2016). https://doi.org/10.1021/acsami.6b04887.
  • J. Pan, R. Zheng, Y. Wang, X. Ye, Z. Wan, C. Jia, X. Weng, J. Xie, L. Deng, A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window, Sol. Energy Mater. Sol. Cells. (2020). https://doi.org/10.1016/j.solmat.2019.110337.
  • S. Mathuri, M.M. Margoni, K. Ramamurthi, R.R. Babu, V. Ganesh, Hydrothermal assisted growth of vertically aligned platelet like structures of WO 3 films on transparent conducting FTO substrate for electrochromic performance, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.01.033.
  • J. Velevska, N. Stojanov, M. Pecovska-Gjorgjevich, M. Najdoski, Electrochromism in tungsten oxide thin films prepared by chemical bath deposition, J. Electrochem. Sci. Eng. (2017). https://doi.org/10.5599/jese.357.
  • R.R. Kharade, S.R. Mane, R.M. Mane, P.S. Patil, P.N. Bhosale, Synthesis and characterization of chemically grown electrochromic tungsten oxide, J. Sol-Gel Sci. Technol. (2010). https://doi.org/10.1007/s10971-010-2291

Novel Synthesis of Good Electrochromic Performance WO3 Nanoplates Grown on Seeded FTO

Year 2021, , 718 - 722, 30.11.2021
https://doi.org/10.31590/ejosat.937476

Abstract

Tungsten trioxide (WO3) has applications in various electrochromic devices and is fabricated using various techniques, which affect its electrochromic properties. In this study, tungsten trioxide (WO3) nanoplates were synthesised via a two-step facile synthesis process using a hydrothermal technique on seeded fluorine-doped tin oxide (FTO) glass substrates. WO3 nanoplates with high porosity were obtained using a fast and simple hydrothermal method. First, a seed layer was grown on FTO using a spin coating process. WO3 nanoplates were then quickly synthesised on the seeded FTO glass using a hydrothermal technique at 200 ˚C for 1h. The nanoplates were characterizated by using XRD, SEM, Chronoamperometry and Cyclic Voltammetry techniques. The WO3 nanoplates have got a crystal structure mixed monoclinic and hexagonal phases. The crystal grain sizes of the film was found to be 36 and 53 nm for the (011) and (200) sharpest crystal planes of monoclinic and hexagonal crystal phases respectively. The switching times of WO3 nanoplates were determined as 1.28 s for colouration and 5.50 s of bleaching, and the diffusion coefficient was calculated as 4.2×10-10 cm2/s. As a result, the nanoplate structures with high porosity were successfully obtained and the WO3 nanoplates showed good electrochromic performance with a good crystal structure, high diffusion coefficient, and short ion insertion time.

References

  • B. Miao, W. Zeng, S. Hussain, Q. Mei, S. Xu, H. Zhang, Y. Li, T. Li, Large scale hydrothermal synthesis of monodisperse hexagonal WO3 nanowire and the growth mechanism, Mater. Lett. (2015). https://doi.org/10.1016/j.matlet.2015.02.020.
  • Z. Xie, L. Gao, B. Liang, X. Wang, G. Chen, Z. Liu, J. Chao, D. Chen, G. Shen, Fast fabrication of a WO 3·2H 2O thin film with improved electrochromic properties, J. Mater. Chem. (2012). https://doi.org/10.1039/c2jm33622g.
  • Z. Jiao, J. Wang, L. Ke, X. Liu, H.V. Demir, M.F. Yang, X.W. Sun, Electrochromic properties of nanostructured tungsten trioxide (hydrate) films and their applications in a complementary electrochromic device, Electrochim. Acta. (2012). https://doi.org/10.1016/j.electacta.2011.12.069.
  • R.R. Kharade, K.R. Patil, P.S. Patil, P.N. Bhosale, Novel microwave assisted sol-gel synthesis (MW-SGS) and electrochromic performance of petal like h-WO 3 thin films, Mater. Res. Bull. (2012). https://doi.org/10.1016/j.materresbull.2012.03.025.
  • J. Livage, D. Ganguli, Sol-gel electrochromic coatings and devices: A review, Sol. Energy Mater. Sol. Cells. (2001). https://doi.org/10.1016/S0927-0248(00)00369-X.
  • P.M. Kadam, N.L. Tarwal, P.S. Shinde, R.S. Patil, H.P. Deshmukh, P.S. Patil, From beads-to-wires-to-fibers of tungsten oxide: Electrochromic response, Appl. Phys. A Mater. Sci. Process. (2009). https://doi.org/10.1007/s00339-009-5334-8.
  • C.C. Liao, F.R. Chen, J.J. Kai, WO3-x nanowires based electrochromic devices, Sol. Energy Mater. Sol. Cells. (2006). https://doi.org/10.1016/j.solmat.2005.07.009.
  • M. Meenakshi, V. Gowthami, P. Perumal, R. Sivakumar, C. Sanjeeviraja, Influence of dopant concentration on the electrochromic properties of tungsten oxide thin films, Electrochim. Acta. (2015). https://doi.org/10.1016/j.electacta.2015.05.187.
  • S. Lin, Y. Guo, X. Li, Y. Liu, Glycine acid-assisted green hydrothermal synthesis and controlled growth of WO3 nanowires, Mater. Lett. (2015). https://doi.org/10.1016/j.matlet.2015.03.099.
  • S. Salmaoui, F. Sediri, N. Gharbi, C. Perruchot, M. Jouini, Hexagonal hydrated tungsten oxide nanomaterials: Hydrothermalsynthesis and electrochemical properties, Electrochim. Acta. (2013). https://doi.org/10.1016/j.electacta.2013.07.086.
  • X.C. Song, Y.F. Zheng, E. Yang, Y. Wang, Large-scale hydrothermal synthesis of WO3 nanowires in the presence of K2SO4, Mater. Lett. (2007). https://doi.org/10.1016/j.matlet.2006.12.055.
  • X. Wang, H. Zhang, L. Liu, W. Li, P. Cao, Controlled morphologies and growth direction of WO3 nanostructures hydrothermally synthesized with citric acid, Mater. Lett. (2014). https://doi.org/10.1016/j.matlet.2014.05.138.
  • J. Huang, X. Xu, C. Gu, G. Fu, W. Wang, J. Liu, Flower-like and hollow sphere-like WO 3 porous nanostructures: Selective synthesis and their photocatalysis property, Mater. Res. Bull. (2012). https://doi.org/10.1016/j.materresbull.2012.08.009.
  • J. Jia, X.D. Liu, X. Li, L. Cao, M. Zhang, B. Wu, X. Zhou, Effect of residual ions of hydrothermal precursors on the thickness and capacitive properties of WO3 nanoplates, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.153715.
  • J. Zhang, J.P. Tu, X.H. Xia, X.L. Wang, C.D. Gu, Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance, J. Mater. Chem. (2011). https://doi.org/10.1039/c0jm04361c.
  • J. Sungpanich, T. Thongtem, S. Thongtem, Photocatalysis of WO3 nanoplates synthesized by conventional-hydrothermal and microwave-hydrothermal methods and of commercial WO3 nanorods, J. Nanomater. (2014). https://doi.org/10.1155/2014/739251.
  • J. Chu, J. Lan, D. Lu, J. Ma, X. Wang, B. Wu, M. Gong, R. Zhang, S. Xiong, Facile fabrication of WO3 crystalline nanoplate on FTO glass and their application in electrochromism, Micro Nano Lett. (2016). https://doi.org/10.1049/mnl.2016.0199.
  • J.Y. Zheng, G. Song, J. Hong, T.K. Van, A.U. Pawar, D.Y. Kim, C.W. Kim, Z. Haider, Y.S. Kang, Facile fabrication of WO3 nanoplates thin films with dominant crystal facet of (002) for water splitting, Cryst. Growth Des. (2014). https://doi.org/10.1021/cg5012154.
  • X. Feng, Y. Chen, Z. Qin, M. Wang, L. Guo, Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting, ACS Appl. Mater. Interfaces. (2016). https://doi.org/10.1021/acsami.6b04887.
  • J. Pan, R. Zheng, Y. Wang, X. Ye, Z. Wan, C. Jia, X. Weng, J. Xie, L. Deng, A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window, Sol. Energy Mater. Sol. Cells. (2020). https://doi.org/10.1016/j.solmat.2019.110337.
  • S. Mathuri, M.M. Margoni, K. Ramamurthi, R.R. Babu, V. Ganesh, Hydrothermal assisted growth of vertically aligned platelet like structures of WO 3 films on transparent conducting FTO substrate for electrochromic performance, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.01.033.
  • J. Velevska, N. Stojanov, M. Pecovska-Gjorgjevich, M. Najdoski, Electrochromism in tungsten oxide thin films prepared by chemical bath deposition, J. Electrochem. Sci. Eng. (2017). https://doi.org/10.5599/jese.357.
  • R.R. Kharade, S.R. Mane, R.M. Mane, P.S. Patil, P.N. Bhosale, Synthesis and characterization of chemically grown electrochromic tungsten oxide, J. Sol-Gel Sci. Technol. (2010). https://doi.org/10.1007/s10971-010-2291
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sibel Morkoç Karadeniz 0000-0002-3215-1300

Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Morkoç Karadeniz, S. (2021). İyi Elektrokromik Performans Gösteren WO3 Nanoplakaların Çekirdeklenmiş FTO Üzerine Yeni Sentezi. Avrupa Bilim Ve Teknoloji Dergisi(27), 718-722. https://doi.org/10.31590/ejosat.937476