Research Article
BibTex RIS Cite

Preparation of Gentamicin Conjugated Cellulose Nanocrystals and Evaluation of Efficacy on Different Microorganisms

Year 2021, , 1105 - 1112, 30.11.2021
https://doi.org/10.31590/ejosat.956593

Abstract

Abstract
Large amounts of waste cotton material generated in textile production cause environmental problems and resource depletion. The production of nanocrystalline cellulose is one of the effective way to the recycling of waste cotton. Cellulose nanoparticles are of great interest in biomedical applications due to their various properties. In this study cellulose nanocrystals were produced from waste cotton through acid hydrolysis in a single step. The extraction of cellulose from waste cotton was carried out by alkalin treatment, afterthat the cellulose nanocrystals were isolated by the nitric acid (68% w/w) and hydrochloride acid (37% w/w) mixture acid hydrolysis. Cellulose nanocrystals were oxidized by sodium periodate (NaIO4) for functionalization. The prepared cellulose nanocrystals were characterized by Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) then gentamicin conjugation studies were carried out. Gentamicin conjugated cellulose nanoparticles were examined for antimicrobial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. Aureus), Pseudomonas aeruginosa(aeruginosa), Klebsiella pneumoniae (K. pneumoniae) and antifungal activity against Candida albicans (C. Albicans). The results confirmed that the periodate oxidized cellulose nanocrystals are effective on bacterai and fungus.

Thanks

The authors would like to thank to Dr. Fikret Keven Karademir for microbiology labrotary facilities.

References

  • Ahmed, M. K. K., Rana, A. C., Dixit V.K. (2005) Calotropis species (Asclepediaceae). A comprehensive review, Pharmacognosy Magazine, 1(2), 48–52.
  • Akhlaghi, S. P., Tiong, D., Berry, R. M., & Tam, K. C. (2014). Comparative release studies of two cationic model drugs from different cellulose nanocrystal derivatives. European Journal of Pharmaceutics and Biopharmaceutics, 88(1), 207-215.
  • Balasubramaniam, B., Prateek, Ranjan, S., Saraf, M., Kar, P., Singh, S. P., ... & Gupta, R. K. (2020). Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacology & Translational Science.
  • Batul, R., Bhave, M., J Mahon, P., & Yu, A. (2020). Polydopamine Nanosphere with In-Situ Loaded Gentamicin and Its Antimicrobial Activity. Molecules, 25(9), 2090.
  • Bauer, A. T. (1966). Antibiotic susceptibility testing by a standardized single disc method. Am J clin pathol, 45, 149-158.
  • Beganovic, M., Luther, M. K., Rice, L. B., Arias, C. A., Rybak, M. J., & LaPlante, K. L. (2018). A review of combination antimicrobial therapy for Enterococcus faecalis bloodstream infections and infective endocarditis. Clinical Infectious Diseases, 67(2), 303-309.
  • Chang, C. W., & Takemoto, J. Y. (2014). Antifungal amphiphilic aminoglycosides. MedChemComm, 5(8), 1048-1057.
  • Chauhan Y. P., Khedkar S. V., Bhagat S. L. & Pardey A. P. (2010). A comparative study of acid hydrolysıs of cellulosic waste (Waste of Hosıery Industry) for manufacturing microcrystalline cellulose. Int. J. Chem. Sci., 8(4),2227-2235.
  • Chen, X. Q., Deng, X. Y., Shen, W. H., & Jia, M. Y. (2018). Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Carbohydrate polymers, 181, 879-884.
  • Čolić, M., Tomić, S., & Bekić, M. (2020). Immunological aspects of nanocellulose. Immunology letters, 222: 80-89
  • Coseri, S., Biliuta, G., Zemljič, L. F., Srndovic, J. S., Larsson, P. T., Strnad, S., ... & Lindström, T. (2015). One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate. RSC advances, 5(104), 85889-85897.
  • Dacrory, S., Abou-Yousef, H., Kamel, S., Abou-Zeid, R. E., Abdel-Aziz, M. S., & Elbadry, M. (2019). Functionalization and cross-linking of carboxymethyl cellulose in aqueous media. Cell Chem Technol, 53(1–2), 11.
  • El Achaby, M., El Miri, N., Hannache, H., Gmouh, S., Trabadelo, V., Aboulkas, A., & Youcef, H. B. (2018 a). Cellulose nanocrystals from Miscanthus fibers: insights into rheological, physico-chemical properties and polymer reinforcing ability. Cellulose, 25(11), 6603-6619.
  • El Achaby, M., Kassab, Z., Aboulkas, A., Gaillard, C., & Barakat, A. (2018 b). Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. International journal of biological macromolecules, 106, 681-691.
  • Errokh, A., Magnin, A., Putaux, J. L., & Boufi, S. (2018). Morphology of the nanocellulose produced by periodate oxidation and reductive treatment of cellulose fibers. Cellulose, 25(7), 3899-3911.
  • Ge, H., Zhang, L., Xu, M., Cao, J., & Kang, C. (2016, November). Preparation of dialdehyde cellulose and its antibacterial activity. In International Conference on Applied Biotechnology (pp. 545-553). Springer, Singapore.
  • Hanani, A. N., Zuliahani, A., Nawawi, W. I., Razif, N., & Rozyanty, A. R. (2017, May). The effect of various acids on properties of microcrystalline cellulose (MCC) extracted from rice husk (RH). In IOP Conference Series: Materials Science and Engineering (Vol. 204, No. 1, p. 012025). IOP Publishing.
  • Hell, S., Ohkawa, K., Amer, H., Potthast, A., & Rosenau, T. (2020). A General Protocol for Electrospun Non-Woven Fabrics of Dialdehyde Cellulose and Poly (Vinyl Alcohol). Nanomaterials, 10(4), 671.
  • Huang, S., Liu, X., Chang, C., & Wang, Y. (2020). Recent developments and prospective food-related applications of cellulose nanocrystals: A review. Cellulose, 27(6), 2991-3011.
  • Islam, M. S., Chen, L., Sisler, J., & Tam, K. C. (2018). Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications. Journal of Materials Chemistry B, 6(6), 864-883.
  • Kassab, Z., Hannache, H., & El Achaby, M. (2019 ). Isolation of cellulose nanocrystals from various lignocellulosic materials: physico-chemical characterization and application in polymer composites development. Materials Today: Proceedings, 13, 964-973.
  • Kim, U. J., & Kuga, S. (2000). Reactive interaction of aromatic amines with dialdehyde cellulose gel. Cellulose, 7(3), 287-297.
  • Kumari, S., Ram, B., Kumar, D., Ranote, S., & Chauhan, G. S. (2018). Nanoparticles of oxidized-cellulose synthesized by green method. Materials Science for Energy Technologies, 1(1), 22-28.
  • Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302-325.
  • Liu, Y., Wang, H., Yu, G., Yu, Q., Li, B., & Mu, X. (2014). A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydrate polymers, 110, 415-422.
  • Maia, T. H. S., Larocca, N. M., Beatrice, C. A. G., de Menezes, A. J., de Freitas Siqueira, G., Pessan, L. A., ... & de Almeida Lucas, A. (2017). Polyethylene cellulose nanofibrils nanocomposites. Carbohydrate polymers, 173, 50-56.
  • Mou, K., Li, J., Wang, Y., Cha, R., & Jiang, X. (2017). 2, 3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection. Journal of Materials Chemistry B, 5(38), 7876-7884.
  • Muñoz-Bonilla, A., Echeverria, C., Sonseca, Á., Arrieta, M. P., & Fernández-García, M. (2019). Bio-based polymers with antimicrobial properties towards sustainable development. Materials, 12(4), 641.
  • Nawaz, A. (2020). Composite of natural bamboo (Dendrocalamus strictus) and TiO 2: Its photocatalytic potential in the degradation of methylene blue under the direct irradiation of solar light. Research on Chemical Intermediates, 1-17. Pietrucha, K., & Safandowska, M. (2015). Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochemistry, 50(12), 2105-2111.
  • Satyamurthy, P., Jain, P., Balasubramanya, R. H., & Vigneshwaran, N. (2011). Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydrate Polymers, 83(1), 122-129.
  • Schwanninger, M., Rodrigues, J. C., Pereira, H., & Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36(1), 23-40.
  • Taheri, A., & Mohammadi, M. (2015). The use of cellulose nanocrystals for potential application in topical delivery of hydroquinone. Chemical biology & drug design, 86(1), 102-106.
  • Tan, X. Y., Abd Hamid, S. B., & Lai, C. W. (2015). Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass and Bioenergy, 81, 584-591.
  • Tomić, S., Ilić, N., Kokol, V., Gruden-Movsesijan, A., Mihajlović, D., Bekić, M., ... & Vučević, D. (2018). Functionalization-dependent effects of cellulose nanofibrils on tolerogenic mechanisms of human dendritic cells. International journal of nanomedicine, 13, 6941.
  • Trache, D., Donnot, A., Khimeche, K., Benelmir, R., & Brosse, N. (2014). Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydrate polymers, 104, 223-230.
  • Vold, I. M. N. (2004). Periodate oxidised chitosans: structure and solution properties.
  • Volkert, B., Wolf, B., Fischer, S., Li, N., & Lou, C. (2009, June). Application of modified bead cellulose as a carrier of active ingredients. In Macromolecular symposia (Vol. 280, No. 1, pp. 130-135). Weinheim: WILEY‐VCH Verlag.
  • Wei, H., Rodriguez, K., Renneckar, S., & Vikesland, P. J. (2014). Environmental science and engineering applications of nanocellulose-based nanocomposites. Environmental Science: Nano, 1(4), 302-316.
  • Xiong, R., Zhang, X., Tian, D., Zhou, Z., & Lu, C. (2012). Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose, 19(4), 1189-1198.
  • Xu, Q., Ji, Y., Sun, Q., Fu, Y., Xu, Y., & Jin, L. (2019). Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release. Nanomaterials, 9(2), 253.
  • Yu, H., Qin, Z., Liang, B., Liu, N., Zhou, Z., & Chen, L. (2013). Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. Journal of Materials Chemistry A, 1(12), 3938-3944.
  • Zhang, L., Ge, H., Xu, M., Cao, J., & Dai, Y. (2017). Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose, 24(5), 2287-2298.
  • Zhang, S., Kai, C., Liu, B., Zhang, S., Wei, W., Xu, X., & Zhou, Z. (2019). Preparation, characterization and antibacterial properties of cellulose membrane containing N-halamine. Cellulose, 26(9), 5621-5633.

Gentamisin Konjuge Selüloz Nanokristallerinin Hazırlanması ve Farklı Mikroorganizmalar Üzerindeki Etkinliğinin Değerlendirilmesi

Year 2021, , 1105 - 1112, 30.11.2021
https://doi.org/10.31590/ejosat.956593

Abstract

Tekstil üretiminde ortaya çıkan büyük miktarlardaki atık pamuk malzemesi, çevre sorunlarına ve kaynakların tükenmesine neden olmaktadır. Atık pamuğun geri dönüştürülmesinin en etkili yollarından biri nanokristalin selüloz üretimidir. Selüloz nanokristaller, çeşitli özelliklerinden dolayı biyomedikal uygulamalarda büyük ilgi görmektedir. Bu çalışmada atık pamuktan asit hidrolizi ile selüloz nanokristaller tek aşamada üretilmiştir. Selüloz ekstraksiyonu, atık pamuktan alkali muamelesi ile gerçekleştirildikten sonra selüloz nanokristaller, nitrik asit (%68 w/w) ve hidroklorür asit (%37 w/w) karışımı asit hidroliz metodu ile izole edilmiştir. Selüloz nanokristaller, sodyum periyodat (NaIO4) ile oksitlenerek modifiye edilmiştir. Hazırlanan selüloz nanokristaller, Transmisyon elektron mikroskobu (TEM) ve Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) ile karakterize edildikten sonra gentamisin konjugasyon çalışmaları yapılmıştır. Gentamisin konjuge selüloz nanopartiküllerin, Escherichia coli (E. Coli), Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), Klebsiella pneumoniae (K. pneumoniae)'ye karşı antimikrobiyal aktiviteleri ve Candida Albicans'a (C. Albicans) karşı antifungal etkisi araştırılmıştır. Sonuçlar, periyodat oksitlenmiş selüloz nanokristallerinin bakteri ve mantar üzerinde etkili olduğunu doğrulamıştır.

References

  • Ahmed, M. K. K., Rana, A. C., Dixit V.K. (2005) Calotropis species (Asclepediaceae). A comprehensive review, Pharmacognosy Magazine, 1(2), 48–52.
  • Akhlaghi, S. P., Tiong, D., Berry, R. M., & Tam, K. C. (2014). Comparative release studies of two cationic model drugs from different cellulose nanocrystal derivatives. European Journal of Pharmaceutics and Biopharmaceutics, 88(1), 207-215.
  • Balasubramaniam, B., Prateek, Ranjan, S., Saraf, M., Kar, P., Singh, S. P., ... & Gupta, R. K. (2020). Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacology & Translational Science.
  • Batul, R., Bhave, M., J Mahon, P., & Yu, A. (2020). Polydopamine Nanosphere with In-Situ Loaded Gentamicin and Its Antimicrobial Activity. Molecules, 25(9), 2090.
  • Bauer, A. T. (1966). Antibiotic susceptibility testing by a standardized single disc method. Am J clin pathol, 45, 149-158.
  • Beganovic, M., Luther, M. K., Rice, L. B., Arias, C. A., Rybak, M. J., & LaPlante, K. L. (2018). A review of combination antimicrobial therapy for Enterococcus faecalis bloodstream infections and infective endocarditis. Clinical Infectious Diseases, 67(2), 303-309.
  • Chang, C. W., & Takemoto, J. Y. (2014). Antifungal amphiphilic aminoglycosides. MedChemComm, 5(8), 1048-1057.
  • Chauhan Y. P., Khedkar S. V., Bhagat S. L. & Pardey A. P. (2010). A comparative study of acid hydrolysıs of cellulosic waste (Waste of Hosıery Industry) for manufacturing microcrystalline cellulose. Int. J. Chem. Sci., 8(4),2227-2235.
  • Chen, X. Q., Deng, X. Y., Shen, W. H., & Jia, M. Y. (2018). Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Carbohydrate polymers, 181, 879-884.
  • Čolić, M., Tomić, S., & Bekić, M. (2020). Immunological aspects of nanocellulose. Immunology letters, 222: 80-89
  • Coseri, S., Biliuta, G., Zemljič, L. F., Srndovic, J. S., Larsson, P. T., Strnad, S., ... & Lindström, T. (2015). One-shot carboxylation of microcrystalline cellulose in the presence of nitroxyl radicals and sodium periodate. RSC advances, 5(104), 85889-85897.
  • Dacrory, S., Abou-Yousef, H., Kamel, S., Abou-Zeid, R. E., Abdel-Aziz, M. S., & Elbadry, M. (2019). Functionalization and cross-linking of carboxymethyl cellulose in aqueous media. Cell Chem Technol, 53(1–2), 11.
  • El Achaby, M., El Miri, N., Hannache, H., Gmouh, S., Trabadelo, V., Aboulkas, A., & Youcef, H. B. (2018 a). Cellulose nanocrystals from Miscanthus fibers: insights into rheological, physico-chemical properties and polymer reinforcing ability. Cellulose, 25(11), 6603-6619.
  • El Achaby, M., Kassab, Z., Aboulkas, A., Gaillard, C., & Barakat, A. (2018 b). Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. International journal of biological macromolecules, 106, 681-691.
  • Errokh, A., Magnin, A., Putaux, J. L., & Boufi, S. (2018). Morphology of the nanocellulose produced by periodate oxidation and reductive treatment of cellulose fibers. Cellulose, 25(7), 3899-3911.
  • Ge, H., Zhang, L., Xu, M., Cao, J., & Kang, C. (2016, November). Preparation of dialdehyde cellulose and its antibacterial activity. In International Conference on Applied Biotechnology (pp. 545-553). Springer, Singapore.
  • Hanani, A. N., Zuliahani, A., Nawawi, W. I., Razif, N., & Rozyanty, A. R. (2017, May). The effect of various acids on properties of microcrystalline cellulose (MCC) extracted from rice husk (RH). In IOP Conference Series: Materials Science and Engineering (Vol. 204, No. 1, p. 012025). IOP Publishing.
  • Hell, S., Ohkawa, K., Amer, H., Potthast, A., & Rosenau, T. (2020). A General Protocol for Electrospun Non-Woven Fabrics of Dialdehyde Cellulose and Poly (Vinyl Alcohol). Nanomaterials, 10(4), 671.
  • Huang, S., Liu, X., Chang, C., & Wang, Y. (2020). Recent developments and prospective food-related applications of cellulose nanocrystals: A review. Cellulose, 27(6), 2991-3011.
  • Islam, M. S., Chen, L., Sisler, J., & Tam, K. C. (2018). Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications. Journal of Materials Chemistry B, 6(6), 864-883.
  • Kassab, Z., Hannache, H., & El Achaby, M. (2019 ). Isolation of cellulose nanocrystals from various lignocellulosic materials: physico-chemical characterization and application in polymer composites development. Materials Today: Proceedings, 13, 964-973.
  • Kim, U. J., & Kuga, S. (2000). Reactive interaction of aromatic amines with dialdehyde cellulose gel. Cellulose, 7(3), 287-297.
  • Kumari, S., Ram, B., Kumar, D., Ranote, S., & Chauhan, G. S. (2018). Nanoparticles of oxidized-cellulose synthesized by green method. Materials Science for Energy Technologies, 1(1), 22-28.
  • Lin, N., & Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59, 302-325.
  • Liu, Y., Wang, H., Yu, G., Yu, Q., Li, B., & Mu, X. (2014). A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydrate polymers, 110, 415-422.
  • Maia, T. H. S., Larocca, N. M., Beatrice, C. A. G., de Menezes, A. J., de Freitas Siqueira, G., Pessan, L. A., ... & de Almeida Lucas, A. (2017). Polyethylene cellulose nanofibrils nanocomposites. Carbohydrate polymers, 173, 50-56.
  • Mou, K., Li, J., Wang, Y., Cha, R., & Jiang, X. (2017). 2, 3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection. Journal of Materials Chemistry B, 5(38), 7876-7884.
  • Muñoz-Bonilla, A., Echeverria, C., Sonseca, Á., Arrieta, M. P., & Fernández-García, M. (2019). Bio-based polymers with antimicrobial properties towards sustainable development. Materials, 12(4), 641.
  • Nawaz, A. (2020). Composite of natural bamboo (Dendrocalamus strictus) and TiO 2: Its photocatalytic potential in the degradation of methylene blue under the direct irradiation of solar light. Research on Chemical Intermediates, 1-17. Pietrucha, K., & Safandowska, M. (2015). Dialdehyde cellulose-crosslinked collagen and its physicochemical properties. Process Biochemistry, 50(12), 2105-2111.
  • Satyamurthy, P., Jain, P., Balasubramanya, R. H., & Vigneshwaran, N. (2011). Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydrate Polymers, 83(1), 122-129.
  • Schwanninger, M., Rodrigues, J. C., Pereira, H., & Hinterstoisser, B. (2004). Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36(1), 23-40.
  • Taheri, A., & Mohammadi, M. (2015). The use of cellulose nanocrystals for potential application in topical delivery of hydroquinone. Chemical biology & drug design, 86(1), 102-106.
  • Tan, X. Y., Abd Hamid, S. B., & Lai, C. W. (2015). Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass and Bioenergy, 81, 584-591.
  • Tomić, S., Ilić, N., Kokol, V., Gruden-Movsesijan, A., Mihajlović, D., Bekić, M., ... & Vučević, D. (2018). Functionalization-dependent effects of cellulose nanofibrils on tolerogenic mechanisms of human dendritic cells. International journal of nanomedicine, 13, 6941.
  • Trache, D., Donnot, A., Khimeche, K., Benelmir, R., & Brosse, N. (2014). Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydrate polymers, 104, 223-230.
  • Vold, I. M. N. (2004). Periodate oxidised chitosans: structure and solution properties.
  • Volkert, B., Wolf, B., Fischer, S., Li, N., & Lou, C. (2009, June). Application of modified bead cellulose as a carrier of active ingredients. In Macromolecular symposia (Vol. 280, No. 1, pp. 130-135). Weinheim: WILEY‐VCH Verlag.
  • Wei, H., Rodriguez, K., Renneckar, S., & Vikesland, P. J. (2014). Environmental science and engineering applications of nanocellulose-based nanocomposites. Environmental Science: Nano, 1(4), 302-316.
  • Xiong, R., Zhang, X., Tian, D., Zhou, Z., & Lu, C. (2012). Comparing microcrystalline with spherical nanocrystalline cellulose from waste cotton fabrics. Cellulose, 19(4), 1189-1198.
  • Xu, Q., Ji, Y., Sun, Q., Fu, Y., Xu, Y., & Jin, L. (2019). Fabrication of cellulose nanocrystal/chitosan hydrogel for controlled drug release. Nanomaterials, 9(2), 253.
  • Yu, H., Qin, Z., Liang, B., Liu, N., Zhou, Z., & Chen, L. (2013). Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. Journal of Materials Chemistry A, 1(12), 3938-3944.
  • Zhang, L., Ge, H., Xu, M., Cao, J., & Dai, Y. (2017). Physicochemical properties, antioxidant and antibacterial activities of dialdehyde microcrystalline cellulose. Cellulose, 24(5), 2287-2298.
  • Zhang, S., Kai, C., Liu, B., Zhang, S., Wei, W., Xu, X., & Zhou, Z. (2019). Preparation, characterization and antibacterial properties of cellulose membrane containing N-halamine. Cellulose, 26(9), 5621-5633.
There are 43 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Aydan Gülsu 0000-0001-5026-6868

Ecem Yüksektepe This is me 0000-0002-8041-2915

Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Gülsu, A., & Yüksektepe, E. (2021). Preparation of Gentamicin Conjugated Cellulose Nanocrystals and Evaluation of Efficacy on Different Microorganisms. Avrupa Bilim Ve Teknoloji Dergisi(27), 1105-1112. https://doi.org/10.31590/ejosat.956593