Research Article
BibTex RIS Cite

Kısmi Yük Koşullarında Dizel-Biyogaz Kullanılarak Çift Yakıtlı Dizel Motorun Enerji ve Ekserji Analizi

Year 2021, , 334 - 346, 30.11.2021
https://doi.org/10.31590/ejosat.961833

Abstract

Artan enerji talebi ve bunu doğrultusunda aşırı fosil yakıt kullanımı dünyamızı olumsuz şekilde etkilemektedir. Alternatif yakıt kaynaklarından biyogaz, araçlar için de potansiyel bir alternatif yakıt olarak tanımlanmaktadır. Bu çalışma, deneysel olarak çift yakıtlı motor sisteminde 0,000125 kilogram/saniye debiyle simüle edilmiş biyogaz kullanılarak 1500 rpm sabit hızda, %25, %50 ve %75 kısmi motor yüklerinde direk enjeksiyonlu dizel motorun enerji ve ekserji analizlerini kapsamaktadır. Deney sonuçları, kısmi yükün artmasıyla enerji ve ekserji verimliği hem sadece dizel yakıt için hem de dizel-biyogaz yakıtı için artma eğilimi göstermiştir. Elde edilen faydalı iş her iki yakıt türü içinde %25, %50 ve %75 kısmi yüklemelerinde sırasıyla 1,60 kW, 3,20 kW ve 4,81 kW olarak belirlenmiştir. Dizel yakıt için, kısmi yüklemelere göre kayıp güç miktarı %25 yük için 5,18 kW, %50 yük için 7,99 kW ve %75 yükleme koşulunda 11,32 kW olarak hesaplanmıştır. Bu kayıplar, çift yakıtlı modda %25 yükleme için 8,04 kW, %50 yükleme oranında 9,91 kW ve %75 yüklemede ise 12,36 kW olarak elde edilmiştir. Kayıplardaki bu artış, biyogaz içerisinde bulunan %30 CO2’nin bulunması silindir içerisindeki oksijen konsantrasyonunu azaltmakta ve tam yanmanın gerçekleşememesiyle açıklanmıştır. Sadece dizel kullanılarak yapılan deneylerde sistemin enerji verimi %25, %50 ve %75 yüklemeler için sırasıyla %25,75, %29,40 ve %29,64 olarak bulunurken çift yakıtlı sistemde biyogaz eklenmesiyle enerji veriminde sırasıyla %18,01, %25,27, %27,97 olarak belirlenmiştir. Ekserji verimliliği ise dizel yakıtı kullanıldığında aynı yükleme koşulları için sırasıyla %22,96, %26,21 ve %26,43 olarak hesaplanırken, çift yakıtlı sistemde bu değerler %17,17, %23,59 ve %25,80 olarak bulunmuştur.

Thanks

Yazar bu çalışmayı gerçekleştirebilmesi için laboratuvar imkânlarını kullanmasına izin veren kıymetli hocalarına; Prof. Dr. Sebahattin Ünalan, Prof. Dr. Nafiz Kahraman ve Prof. Dr. Selahaddin Orhan Akansu’ya teşekkürlerini sunar.

References

  • Atelge, M. R., Atabani, A. E., Abut, S., Kaya, M., Eskicioglu, C., Semaan, G., ve ark. (2021). Anaerobic co-digestion of oil-extracted spent coffee grounds with various wastes: Experimental and kinetic modeling studies. Bioresource Technology, 322, 124470.
  • Atelge, M. R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D. D., Chang, S. W., ve ark. (2020). Biogas Production from Organic Waste: Recent Progress and Perspectives. Waste and Biomass Valorization, 11(3), 1019-1040.
  • Atelge, R. (2021). Türkiye'de Sığır Gübresinden Biyoyakıt Olarak Biyogaz Üretiminin Potansiyeli ve 2030 ve 2053 Yıllarında Karbon Emisyonlarının Azaltılmasına Öngörülen Etkisi. International Journal of Innovative Engineering Applications, 5(1), 56-64.
  • Bari, S. (1996). Effect of carbon dioxide on the performance of biogas/diesel duel-fuel engine. Renewable Energy, 9(1), 1007-1010.
  • Barik, D., Kumar, A., ve Murugan, S. (2018). Effect of Compression Ratio on Combustion Performance and Emission Characteristic of a Direct Injection Diesel Engine Fueled with Upgraded Biogas–Karanja Methyl Ester–Diethyl Ether Port Injection. Energy & Fuels, 32(4), 5081-5089.
  • Barik, D., ve Murugan, S. (2014). Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode. Energy, 72, 760-771.
  • Barik, D., ve Murugan, S. (2016). Experimental investigation on the behavior of a DI diesel engine fueled with raw biogas–diesel dual fuel at different injection timing. Journal of the Energy Institute, 89(3), 373-388.
  • Bora Bhaskor, J., ve Saha Ujjwal, K. (2016). Theoretical Performance Limits of a Biogas–Diesel Powered Dual Fuel Diesel Engine for Different Combinations of Compression Ratio and Injection Timing. Journal of Energy Engineering, 142(2), E4015001.
  • Bora, B. J., ve Saha, U. K. (2016). Experimental evaluation of a rice bran biodiesel – biogas run dual fuel diesel engine at varying compression ratios. Renewable Energy, 87, 782-790.
  • Bora, B. J., Saha, U. K., Chatterjee, S., ve Veer, V. (2014). Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. Energy Conversion and Management, 87, 1000-1009.
  • Börjesson, P., ve Mattiasson, B. (2008). Biogas as a resource-efficient vehicle fuel. Trends in Biotechnology, 26(1), 7-13. Cheenkachorn, K., Poompipatpong, C., ve Ho, C. G. (2013). Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas). Energy, 53, 52-57.
  • Duc, P. M., ve Wattanavichien, K. (2007). Study on biogas premixed charge diesel dual fuelled engine. Energy Conversion and Management, 48(8), 2286-2308.
  • Goga, G., Chauhan, B. S., Mahla, S. K., Dhir, A., ve Cho, H. M. (2020). Effect of varying biogas mass flow rate on performance and emission characteristics of a diesel engine fuelled with blends of n-butanol and diesel. Journal of Thermal Analysis and Calorimetry, 140(6), 2817-2830.
  • Henham, A., ve Makkar, M. K. (1998). Combustion of simulated biogas in a dual-fuel diesel engine. Energy Conversion and Management, 39(16), 2001-2009.
  • Huang, J., ve Crookes, R. J. (1998). Assessment of simulated biogas as a fuel for the spark ignition engine. Fuel, 77(15), 1793-1801.
  • Jadhao, J. S., ve Thombare, D. G. (2013). Review on exhaust gas heat recovery for IC engine. International Journal of Engineering and Innovative Technology (IJEIT) Volume, 2.
  • Karaağaç, M. O., Kabul, A., ve Oğul, H. (2019). First-and second-law thermodynamic analyses of a combined natural gas cycle power plant: Sankey and Grossman diagrams. Turkish Journal of Physics, 43(1), 93-108.
  • Karim, G. A. (2010). Combustion in Gas-fueled Compression Ignition Engines of the Dual Fuel Type Handbook of Combustion (pp. 213-235).
  • Kiliç, B., ve Osman, İ. (2019). Thermodynamic Analysis of The Organic Rankine Cycle Using Diesel Engine Waste Heat Recovery. Avrupa Bilim ve Teknoloji Dergisi(15), 112-117.
  • Kumar Sharma, P., Sharma, D., Lal Soni, S., Jhalani, A., Singh, D., ve Sharma, S. (2020). Energy, exergy, and emission analysis of a hydroxyl fueled compression ignition engine under dual fuel mode. Fuel, 265, 116923.
  • Luijten, C. C. M., ve Kerkhof, E. (2011). Jatropha oil and biogas in a dual fuel CI engine for rural electrification. Energy Conversion and Management, 52(2), 1426-1438.
  • Matuszewska, A., Owczuk, M., Zamojska-Jaroszewicz, A., Jakubiak-Lasocka, J., Lasocki, J., ve Orliński, P. (2016). Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors. Energy Conversion and Management, 125, 309-319.
  • Mohamed Ibrahim, M., Varuna Narasimhan, J., ve Ramesh, A. (2015). Comparison of the predominantly premixed charge compression ignition and the dual fuel modes of operation with biogas and diesel as fuels. Energy, 89, 990-1000.
  • Mustafi, N. N., Raine, R. R., ve Verhelst, S. (2013). Combustion and emissions characteristics of a dual fuel engine operated on alternative gaseous fuels. Fuel, 109, 669-678.
  • Sorathia, H. S., ve Yadav, H. J. (2012). Energy analyses to a ci-engine using diesel and bio-gas dual fuel—a review study. world, 1(5).
  • Subramanian, K. A., Mathad, V. C., Vijay, V. K., ve Subbarao, P. M. V. (2013). Comparative evaluation of emission and fuel economy of an automotive spark ignition vehicle fuelled with methane enriched biogas and CNG using chassis dynamometer. Applied Energy, 105, 17-29.
  • Tippayawong, N., Promwungkwa, A., ve Rerkkriangkrai, P. (2007). Long-term operation of a small biogas/diesel dual-fuel engine for on-farm electricity generation. Biosystems Engineering, 98(1), 26-32.
  • Verma, S., Das, L. M., ve Kaushik, S. C. (2017). Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis. Energy Conversion and Management, 138, 346-359.
  • Verma, S., Das, L. M., Kaushik, S. C., ve Bhatti, S. S. (2019a). The effects of compression ratio and EGR on the performance and emission characteristics of diesel-biogas dual fuel engine. Applied Thermal Engineering, 150, 1090-1103.
  • Verma, S., Das, L. M., Kaushik, S. C., ve Tyagi, S. K. (2018). An experimental investigation of exergetic performance and emission characteristics of hydrogen supplemented biogas-diesel dual fuel engine. International Journal of Hydrogen Energy, 43(4), 2452-2468.
  • Verma, S., Das, L. M., Kaushik, S. C., ve Tyagi, S. K. (2019b). An Experimental Comparison of Enriched Biogas and CNG on Dual Fuel Operation of a Diesel Engine. IOP Conference Series: Earth and Environmental Science, 264, 012004.
  • Verma, S., Kumar, K., Das, L. M., ve Kaushik, S. C. (2020). Effect of Hydrogen Enrichment Strategy on Performance and Emission Features of Biodiesel-Biogas Dual Fuel Engine Using Simulation and Experimental Analyses. Journal of Energy Resources Technology, 143(9).
  • Yildiz, İ. b., ve Çalişkan, H. (2020). Motor Yüküne Bağli Olarak Bİyodİzel Yakitli Bİr Dİzel Motorun Enerjİ Ve Ekserjİ Analİzİ Sonuçlarinin Değerlendİrİlmesİ. Mühendislik Bilimleri ve Tasarım Dergisi, 8(3), 833-843.

Energy and Exergy Analyses of Dual Fuel Diesel Engine Using Diesel-Biogas at Partially Load Conditions

Year 2021, , 334 - 346, 30.11.2021
https://doi.org/10.31590/ejosat.961833

Abstract

Increasing energy demand and excessive use of fossil fuels negatively affect our world. Biogas is defined as a potential alternative fuel for vehicles. This study covered energy and exergy analyses of the direct injection diesel engine at 1500 rpm constant speed 25%, 50% and 75% partially load condition using simulated biogas with a flow rate of 0.000125 kilograms/second with a dual fuel engine system. Results revealed that energy and exergy efficiency tended to increase both for diesel fuel and diesel-biogas fuel with the increase of partial load. The obtained work was 1.60 kW, 3.20 kW and 4.81 kW for 25%, 50% and 75% loading condition for both fuel types. For diesel fuel, the amount of lost power was calculated as 5.18 kW for 25% load, 7.99 kW for 50% load and 11.32 kW with 75% loading condition. These losses were obtained as 8.04 kW for 25% loading, 9.91 kW at 50% loading rate and 12.36 kW on 75% loading in dual fuel mode. This increase in losses was explained by the presence of 30% CO2 in biogas, reducing the oxygen concentration in the cylinder and preventing combustion process. For diesel fuel, the energy efficiency of the system was 25.75%, 29.40% and 29.64% for loadings of 25%, 50% and 75% respectively, while the energy efficiency was determined as 18.01%, 25.27%, 27.97% with the addition of biogas in the dual fuel system. Exergy efficiency was calculated as 22.96%, 26.21% and 26.43% respectively for the same loading conditions when diesel fuel was used, while in the dual fuel system these values were found to be 17.17%, 23.59% and 25.80%.

References

  • Atelge, M. R., Atabani, A. E., Abut, S., Kaya, M., Eskicioglu, C., Semaan, G., ve ark. (2021). Anaerobic co-digestion of oil-extracted spent coffee grounds with various wastes: Experimental and kinetic modeling studies. Bioresource Technology, 322, 124470.
  • Atelge, M. R., Krisa, D., Kumar, G., Eskicioglu, C., Nguyen, D. D., Chang, S. W., ve ark. (2020). Biogas Production from Organic Waste: Recent Progress and Perspectives. Waste and Biomass Valorization, 11(3), 1019-1040.
  • Atelge, R. (2021). Türkiye'de Sığır Gübresinden Biyoyakıt Olarak Biyogaz Üretiminin Potansiyeli ve 2030 ve 2053 Yıllarında Karbon Emisyonlarının Azaltılmasına Öngörülen Etkisi. International Journal of Innovative Engineering Applications, 5(1), 56-64.
  • Bari, S. (1996). Effect of carbon dioxide on the performance of biogas/diesel duel-fuel engine. Renewable Energy, 9(1), 1007-1010.
  • Barik, D., Kumar, A., ve Murugan, S. (2018). Effect of Compression Ratio on Combustion Performance and Emission Characteristic of a Direct Injection Diesel Engine Fueled with Upgraded Biogas–Karanja Methyl Ester–Diethyl Ether Port Injection. Energy & Fuels, 32(4), 5081-5089.
  • Barik, D., ve Murugan, S. (2014). Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas–diesel in dual fuel mode. Energy, 72, 760-771.
  • Barik, D., ve Murugan, S. (2016). Experimental investigation on the behavior of a DI diesel engine fueled with raw biogas–diesel dual fuel at different injection timing. Journal of the Energy Institute, 89(3), 373-388.
  • Bora Bhaskor, J., ve Saha Ujjwal, K. (2016). Theoretical Performance Limits of a Biogas–Diesel Powered Dual Fuel Diesel Engine for Different Combinations of Compression Ratio and Injection Timing. Journal of Energy Engineering, 142(2), E4015001.
  • Bora, B. J., ve Saha, U. K. (2016). Experimental evaluation of a rice bran biodiesel – biogas run dual fuel diesel engine at varying compression ratios. Renewable Energy, 87, 782-790.
  • Bora, B. J., Saha, U. K., Chatterjee, S., ve Veer, V. (2014). Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. Energy Conversion and Management, 87, 1000-1009.
  • Börjesson, P., ve Mattiasson, B. (2008). Biogas as a resource-efficient vehicle fuel. Trends in Biotechnology, 26(1), 7-13. Cheenkachorn, K., Poompipatpong, C., ve Ho, C. G. (2013). Performance and emissions of a heavy-duty diesel engine fuelled with diesel and LNG (liquid natural gas). Energy, 53, 52-57.
  • Duc, P. M., ve Wattanavichien, K. (2007). Study on biogas premixed charge diesel dual fuelled engine. Energy Conversion and Management, 48(8), 2286-2308.
  • Goga, G., Chauhan, B. S., Mahla, S. K., Dhir, A., ve Cho, H. M. (2020). Effect of varying biogas mass flow rate on performance and emission characteristics of a diesel engine fuelled with blends of n-butanol and diesel. Journal of Thermal Analysis and Calorimetry, 140(6), 2817-2830.
  • Henham, A., ve Makkar, M. K. (1998). Combustion of simulated biogas in a dual-fuel diesel engine. Energy Conversion and Management, 39(16), 2001-2009.
  • Huang, J., ve Crookes, R. J. (1998). Assessment of simulated biogas as a fuel for the spark ignition engine. Fuel, 77(15), 1793-1801.
  • Jadhao, J. S., ve Thombare, D. G. (2013). Review on exhaust gas heat recovery for IC engine. International Journal of Engineering and Innovative Technology (IJEIT) Volume, 2.
  • Karaağaç, M. O., Kabul, A., ve Oğul, H. (2019). First-and second-law thermodynamic analyses of a combined natural gas cycle power plant: Sankey and Grossman diagrams. Turkish Journal of Physics, 43(1), 93-108.
  • Karim, G. A. (2010). Combustion in Gas-fueled Compression Ignition Engines of the Dual Fuel Type Handbook of Combustion (pp. 213-235).
  • Kiliç, B., ve Osman, İ. (2019). Thermodynamic Analysis of The Organic Rankine Cycle Using Diesel Engine Waste Heat Recovery. Avrupa Bilim ve Teknoloji Dergisi(15), 112-117.
  • Kumar Sharma, P., Sharma, D., Lal Soni, S., Jhalani, A., Singh, D., ve Sharma, S. (2020). Energy, exergy, and emission analysis of a hydroxyl fueled compression ignition engine under dual fuel mode. Fuel, 265, 116923.
  • Luijten, C. C. M., ve Kerkhof, E. (2011). Jatropha oil and biogas in a dual fuel CI engine for rural electrification. Energy Conversion and Management, 52(2), 1426-1438.
  • Matuszewska, A., Owczuk, M., Zamojska-Jaroszewicz, A., Jakubiak-Lasocka, J., Lasocki, J., ve Orliński, P. (2016). Evaluation of the biological methane potential of various feedstock for the production of biogas to supply agricultural tractors. Energy Conversion and Management, 125, 309-319.
  • Mohamed Ibrahim, M., Varuna Narasimhan, J., ve Ramesh, A. (2015). Comparison of the predominantly premixed charge compression ignition and the dual fuel modes of operation with biogas and diesel as fuels. Energy, 89, 990-1000.
  • Mustafi, N. N., Raine, R. R., ve Verhelst, S. (2013). Combustion and emissions characteristics of a dual fuel engine operated on alternative gaseous fuels. Fuel, 109, 669-678.
  • Sorathia, H. S., ve Yadav, H. J. (2012). Energy analyses to a ci-engine using diesel and bio-gas dual fuel—a review study. world, 1(5).
  • Subramanian, K. A., Mathad, V. C., Vijay, V. K., ve Subbarao, P. M. V. (2013). Comparative evaluation of emission and fuel economy of an automotive spark ignition vehicle fuelled with methane enriched biogas and CNG using chassis dynamometer. Applied Energy, 105, 17-29.
  • Tippayawong, N., Promwungkwa, A., ve Rerkkriangkrai, P. (2007). Long-term operation of a small biogas/diesel dual-fuel engine for on-farm electricity generation. Biosystems Engineering, 98(1), 26-32.
  • Verma, S., Das, L. M., ve Kaushik, S. C. (2017). Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis. Energy Conversion and Management, 138, 346-359.
  • Verma, S., Das, L. M., Kaushik, S. C., ve Bhatti, S. S. (2019a). The effects of compression ratio and EGR on the performance and emission characteristics of diesel-biogas dual fuel engine. Applied Thermal Engineering, 150, 1090-1103.
  • Verma, S., Das, L. M., Kaushik, S. C., ve Tyagi, S. K. (2018). An experimental investigation of exergetic performance and emission characteristics of hydrogen supplemented biogas-diesel dual fuel engine. International Journal of Hydrogen Energy, 43(4), 2452-2468.
  • Verma, S., Das, L. M., Kaushik, S. C., ve Tyagi, S. K. (2019b). An Experimental Comparison of Enriched Biogas and CNG on Dual Fuel Operation of a Diesel Engine. IOP Conference Series: Earth and Environmental Science, 264, 012004.
  • Verma, S., Kumar, K., Das, L. M., ve Kaushik, S. C. (2020). Effect of Hydrogen Enrichment Strategy on Performance and Emission Features of Biodiesel-Biogas Dual Fuel Engine Using Simulation and Experimental Analyses. Journal of Energy Resources Technology, 143(9).
  • Yildiz, İ. b., ve Çalişkan, H. (2020). Motor Yüküne Bağli Olarak Bİyodİzel Yakitli Bİr Dİzel Motorun Enerjİ Ve Ekserjİ Analİzİ Sonuçlarinin Değerlendİrİlmesİ. Mühendislik Bilimleri ve Tasarım Dergisi, 8(3), 833-843.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Raşit Atelge 0000-0002-0613-2501

Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Atelge, R. (2021). Kısmi Yük Koşullarında Dizel-Biyogaz Kullanılarak Çift Yakıtlı Dizel Motorun Enerji ve Ekserji Analizi. Avrupa Bilim Ve Teknoloji Dergisi(27), 334-346. https://doi.org/10.31590/ejosat.961833