Research Article
BibTex RIS Cite

Fay Kayası Mineralojisinde Deformasyonun Rolü

Year 2021, , 942 - 949, 30.11.2021
https://doi.org/10.31590/ejosat.963097

Abstract

Doğu Anadolu Fayı boyunca yeralan magmatik ve sedimanter kayaç grupları, aktif fay tektoniği nedeniyle, breşten fay kilinine kadar farklı tane boyutunda fay kayalarının geliştiği geniş bir zondur. Doğu Anadolu Fay Zonu boyunca; Karbonatlaşma, silisleşme ve cevher oluşumları gelişmiştir. Alterasyon ve farklı cevher oluşumlarının varlığı, tektonizma, deformasyon ve jeokimyasal işlevlerin bir sonucudur. Bu kayaçlarda, yaygın olarak serpantin, karbonat, talk, montmorillonit, illit, klorit gibi alterasyon ürünü minerallerin varlığı, ayrıca manyezit gelişimi, sıcaklığa, redüksiyon ve permeabiliteye işaret eder. Mineralojik incelemelerle belirlenen kalsit, hematit, limonit ve klorit mineralleri progresif alterasyonu, yüksek CO2 ve kalsiyum içeriği ise hidrotermal akışkanların, Mg-silikatlar üzerindeki etkisini gösterir. Mikroskopik incelemeler ve jeokimyasal veriler, breşik veya kil boyutundaki tüm fay kayalarında, karbonatlaşma ve eşlik eden silisleşmenin geliştiğini gösterir. Bu durum, aktif tektoniğin, orta derece sıcaklığın ve kayaç permeabilitesinin sonucu olup, tektonik aktivite silis oluşumunu artırır. Silisli-karbonat gelişimi sırasında, sıcaklığın orta-yüksek derecede olması, deformasyon sırasında mineraller arası reaksiyonun hızlanmasına sebep olur.

Supporting Institution

FIRAT ÜNİVERSİTESİ FÜBAP-MF 20.41

Project Number

MF 20.41

Thanks

Bu çalışma Fırat Üniversitesi Proje Kordinasyon Birimi (FÜBAP)tarafından MF 20.41. nolu proje kapsamında desteklenmiş olup, araştırmacılar olarak teşekkür ederiz.

References

  • Andreani, M., Luquot, L., Gouze, P., Godard, M., Hoise, E., Gibert, B., (2009). Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites. Environmental Science &Technology, 43, 1226-1231.
  • Ash, C. H. and Arksey, R. L,. (1990). The listwanite-lode gold association in British Columbia. Geological Fieldwork 1989, B.C. Department of Energy and Mines, 1990-1,365- 364. Reeder, R. J.. (1983). Crystal chemistry of the rhombohedral carbonates. Mineralogical Society of America Reviews in Mineralogy, 11, 1-47.
  • Altınlı, İ.E. (1963). Explanatory text of the Geological Map of Turkey of 1:500 000 scale; Erzurum sheet. Publ. Bulletin of Mineral Research and Exploration Inst., Ankara. Arpat, E., Şaroğlu, F. (1975). Türkiye'de Bazı Önemli Genç Tektonik Olaylar. Türkiye Jeoloji Bülteni, 18 (1-2), 91-101.
  • Bonzanigo L, Eberhardt E, Loew, S. (2007). Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part I. Geological and hydromechanical factors controlling the Campo Vallemaggia landslide. Can Geotech J 44,1157–1180.
  • Brindley, G.W. and Brown, G. (1980). X-Ray Diffraction Procedures for Clay Mineral Identification. In: Brindley, G.W. and Brown, G., Eds., Crystal Structures of Clay Minerals and Their X-Ray Identification, Mineralogical Society, 305-356.
  • Caritat, P. de, Main, P.T., Grunsky, E.C. & Mann, A. (2017). Recognition of geochemical footprints of mineral systems in the regolith at regional to continental scales, Australian Journal of Earth Sciences, 64:8, 1033-1043.
  • Çağlayan, A. (2010). Savcılı Fay Zonunun (Kırşehir) Yapısal Analizi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, yayımlanmamış.
  • Davis, H.G. and Reynolds, S.J. (1996). Structural Geology of Rocks and Regions. Jonh Wiley & Sons, Inc. 776.
  • Duman, T. Y., Emre, Ö. (2013). The East Anatolian Fault: geometry, segmentation and jog characteristics. Geological Society, London, Special Publications, 372. Hetzel, R., Ring, U., Akal, C., & Troesch, M. (1995). Miocene NNE-directed extensional unroofing in the Menderes Massif, southwestern Turkey. Journal of the Geological Society, 152(4), 639-654.
  • Higgins, M.W. (1971). Cataclastic rocks. In: Professional Paper. United States Geological Survey, 687, 97. Işık, V., Seyitoğlu, G. Cemen, I. (2003). Ductile-brittle transition along the Alasehir shear zone and its structural relationship with the Simav detachment, Menderes massif, western Turkey.Tectonophysics, 374, 1-18.
  • İnceöz, M., Kılıç, A. D.(2014). Tektonizma, Alterasyon ve Ultramafik Sistemlerin Rolü. Fırat Univ. Journal of Engineering. 26 (2), 149-157.
  • Kılıç, A.D. (2021). Fay Kili Mineralojisinde SEM ve XRD Veri Analizi, ICOMNAS’21 (Kabul edildi)
  • Lebourg T, Hernandez M, Jomard H, El Bedoui S, Bois T, Zerathe S, Tric E, Vidal M. (2011). Temporal evolution of weathered cataclastic material in gravitational faults of the La Clapiere deep-seated landslide by mechanical approach. Landslides 8,241–252.
  • Leydier, T., Goncalves, P., Lanari, P., Oliot, E. (2019). On the petrology of brittle precursors of shear zones – An expression of concomitant brittle deformation and fluid–rock interactions in the ‘ductile’ continental crust?. Journal of Metamorfik Petroloji, 37, 8,1129-1149.
  • Lubiniecki, D. C., White, S. R., King, R. C., Holford, S. P., Bunch, M. A., Hill, S. M. (2019). Structural evolution of carbonate-hosted cataclastic bands adjacent to a major neotectonic fault, Sellicks Beach, South Australia. Journal of Structural Geology, 126, 11-24.
  • Miller, D. D. (1998). Distributed shear, rotation, and partitioned strain along the San Andreas fault, central California. Geology, v. 26, p. 867–870.
  • Orioloa,S., Wemmerb, K., Oyhantçabalc,P., Fossend, H., Schulze,B., Siegesmundb,S., (2018). Geochronology of shear zones – A review. Earth-Science Reviews,185, 665-683.
  • Prando, F., Menegon, L., Anderson, M.W., Marchesini, B., Mattila, J., Viola, G. (2019). Fluid-mediated, brittle-ductile deformation at seismogenic depth: Part II – Stress history and fluid pressure variations in a shear zone in a nuclear waste repository (Olkiluoto Island, Finland).
  • Rollinson, R.. (1993). Using Geochemical Data:Evaluation, Presentation, Interpretation, Longman Scientific&Technical: Essex.
  • Sarıkaya, M. A. (2004). Gediz ayrılma zonu: Fay kayacı stratigrafisi ve tektonik önemi. Yerbilimleri Dergisi, 25(30), 63-79.
  • Satsukawa, T.; Lin, A. 2016. “Structural analysis of cataclastic rock of active fault damage zones: An example from Nojima and Arima-Takatsuki fault zones (SW Japan)”, American Geophysical Union, Fall Meeting 2016.
  • Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3), 191-213.
  • Spry, A. (1969). Metamorphic Textures. Pergamon, London.
  • Strauhal, T., Zangerl, C., Fellin, W., Holzmann, M., Engl, D. A., Brandner, R., Tropper, P., Tessadri, R., (2017). Structure, Mineralogy and Geomechanical Properties of Shear Zones of Deep-Seated Rockslides in Metamorphic Rocks (Tyrol, Austria). Rock Mechanics and Rock Engineering, 50, 419–438.
  • Wang, Y., Zhou, L., Zwingmann, H., Lo, C. H., Li, G., Hao, J., (2020). 40Ar/39Ar dating of cataclastic K-feldspar: A new approach for establishing the chronology of brittle deformation. Journal of Structural Geology, 131, 103-948.
  • Wilson, M. (1989). Igneous Petrogeaesis.. Oxford University Press., 466.
  • Wise, D.U., Dunn, D.E., Engelder, J.T., Geiser, P.A., Hatcher, R.D., Kish, S.A., Odom, A.L. and Schamel, S. (1984). Fault-related rocks: Suggestion for terminology. Geology, 12, 391-394.

The Role of Deformation in Fault Rock Mineralogy

Year 2021, , 942 - 949, 30.11.2021
https://doi.org/10.31590/ejosat.963097

Abstract

The Igneous and sedimentary rock groups along the East Anatolian Fault have caused formation of fault rocks in different grain sizes from breccia to fault clay due to active fault tectonics. The carbonation, silicification and mineralizations developed along its are the result of tectonism, deformation and geochemical functions. In these rocks have been determined alteration product minerals such as serpentine, carbonate, talc, montmorillonite, illite and chlorite. Furthermore, magnesite minerals shows temperature, reduction and permeability. The progressive alteration of calcite, hematite, limonite and chlorite minerals determined by mineralogical studies. They shows effect of hydrothermal fluids with high CO2 and calcium content on Mg-silicates. The Microscopic studys and geochemical data show that carbonation and accompanying silicification in all brecciated or clay-sized rocks are due to active tectonism, medium temperature and permeability. During siliceous-carbonate development, the medium-high temperature causes acceleration of inter-mineral reaction during deformation.

Project Number

MF 20.41

References

  • Andreani, M., Luquot, L., Gouze, P., Godard, M., Hoise, E., Gibert, B., (2009). Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites. Environmental Science &Technology, 43, 1226-1231.
  • Ash, C. H. and Arksey, R. L,. (1990). The listwanite-lode gold association in British Columbia. Geological Fieldwork 1989, B.C. Department of Energy and Mines, 1990-1,365- 364. Reeder, R. J.. (1983). Crystal chemistry of the rhombohedral carbonates. Mineralogical Society of America Reviews in Mineralogy, 11, 1-47.
  • Altınlı, İ.E. (1963). Explanatory text of the Geological Map of Turkey of 1:500 000 scale; Erzurum sheet. Publ. Bulletin of Mineral Research and Exploration Inst., Ankara. Arpat, E., Şaroğlu, F. (1975). Türkiye'de Bazı Önemli Genç Tektonik Olaylar. Türkiye Jeoloji Bülteni, 18 (1-2), 91-101.
  • Bonzanigo L, Eberhardt E, Loew, S. (2007). Long-term investigation of a deep-seated creeping landslide in crystalline rock. Part I. Geological and hydromechanical factors controlling the Campo Vallemaggia landslide. Can Geotech J 44,1157–1180.
  • Brindley, G.W. and Brown, G. (1980). X-Ray Diffraction Procedures for Clay Mineral Identification. In: Brindley, G.W. and Brown, G., Eds., Crystal Structures of Clay Minerals and Their X-Ray Identification, Mineralogical Society, 305-356.
  • Caritat, P. de, Main, P.T., Grunsky, E.C. & Mann, A. (2017). Recognition of geochemical footprints of mineral systems in the regolith at regional to continental scales, Australian Journal of Earth Sciences, 64:8, 1033-1043.
  • Çağlayan, A. (2010). Savcılı Fay Zonunun (Kırşehir) Yapısal Analizi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, yayımlanmamış.
  • Davis, H.G. and Reynolds, S.J. (1996). Structural Geology of Rocks and Regions. Jonh Wiley & Sons, Inc. 776.
  • Duman, T. Y., Emre, Ö. (2013). The East Anatolian Fault: geometry, segmentation and jog characteristics. Geological Society, London, Special Publications, 372. Hetzel, R., Ring, U., Akal, C., & Troesch, M. (1995). Miocene NNE-directed extensional unroofing in the Menderes Massif, southwestern Turkey. Journal of the Geological Society, 152(4), 639-654.
  • Higgins, M.W. (1971). Cataclastic rocks. In: Professional Paper. United States Geological Survey, 687, 97. Işık, V., Seyitoğlu, G. Cemen, I. (2003). Ductile-brittle transition along the Alasehir shear zone and its structural relationship with the Simav detachment, Menderes massif, western Turkey.Tectonophysics, 374, 1-18.
  • İnceöz, M., Kılıç, A. D.(2014). Tektonizma, Alterasyon ve Ultramafik Sistemlerin Rolü. Fırat Univ. Journal of Engineering. 26 (2), 149-157.
  • Kılıç, A.D. (2021). Fay Kili Mineralojisinde SEM ve XRD Veri Analizi, ICOMNAS’21 (Kabul edildi)
  • Lebourg T, Hernandez M, Jomard H, El Bedoui S, Bois T, Zerathe S, Tric E, Vidal M. (2011). Temporal evolution of weathered cataclastic material in gravitational faults of the La Clapiere deep-seated landslide by mechanical approach. Landslides 8,241–252.
  • Leydier, T., Goncalves, P., Lanari, P., Oliot, E. (2019). On the petrology of brittle precursors of shear zones – An expression of concomitant brittle deformation and fluid–rock interactions in the ‘ductile’ continental crust?. Journal of Metamorfik Petroloji, 37, 8,1129-1149.
  • Lubiniecki, D. C., White, S. R., King, R. C., Holford, S. P., Bunch, M. A., Hill, S. M. (2019). Structural evolution of carbonate-hosted cataclastic bands adjacent to a major neotectonic fault, Sellicks Beach, South Australia. Journal of Structural Geology, 126, 11-24.
  • Miller, D. D. (1998). Distributed shear, rotation, and partitioned strain along the San Andreas fault, central California. Geology, v. 26, p. 867–870.
  • Orioloa,S., Wemmerb, K., Oyhantçabalc,P., Fossend, H., Schulze,B., Siegesmundb,S., (2018). Geochronology of shear zones – A review. Earth-Science Reviews,185, 665-683.
  • Prando, F., Menegon, L., Anderson, M.W., Marchesini, B., Mattila, J., Viola, G. (2019). Fluid-mediated, brittle-ductile deformation at seismogenic depth: Part II – Stress history and fluid pressure variations in a shear zone in a nuclear waste repository (Olkiluoto Island, Finland).
  • Rollinson, R.. (1993). Using Geochemical Data:Evaluation, Presentation, Interpretation, Longman Scientific&Technical: Essex.
  • Sarıkaya, M. A. (2004). Gediz ayrılma zonu: Fay kayacı stratigrafisi ve tektonik önemi. Yerbilimleri Dergisi, 25(30), 63-79.
  • Satsukawa, T.; Lin, A. 2016. “Structural analysis of cataclastic rock of active fault damage zones: An example from Nojima and Arima-Takatsuki fault zones (SW Japan)”, American Geophysical Union, Fall Meeting 2016.
  • Sibson, R. H. (1977). Fault rocks and fault mechanisms. Journal of the Geological Society, 133(3), 191-213.
  • Spry, A. (1969). Metamorphic Textures. Pergamon, London.
  • Strauhal, T., Zangerl, C., Fellin, W., Holzmann, M., Engl, D. A., Brandner, R., Tropper, P., Tessadri, R., (2017). Structure, Mineralogy and Geomechanical Properties of Shear Zones of Deep-Seated Rockslides in Metamorphic Rocks (Tyrol, Austria). Rock Mechanics and Rock Engineering, 50, 419–438.
  • Wang, Y., Zhou, L., Zwingmann, H., Lo, C. H., Li, G., Hao, J., (2020). 40Ar/39Ar dating of cataclastic K-feldspar: A new approach for establishing the chronology of brittle deformation. Journal of Structural Geology, 131, 103-948.
  • Wilson, M. (1989). Igneous Petrogeaesis.. Oxford University Press., 466.
  • Wise, D.U., Dunn, D.E., Engelder, J.T., Geiser, P.A., Hatcher, R.D., Kish, S.A., Odom, A.L. and Schamel, S. (1984). Fault-related rocks: Suggestion for terminology. Geology, 12, 391-394.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ayşe Didem Kılıç 0000-0003-3743-8631

Tuğçe Karaca This is me 0000-0001-7233-8797

Project Number MF 20.41
Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Kılıç, A. D., & Karaca, T. (2021). Fay Kayası Mineralojisinde Deformasyonun Rolü. Avrupa Bilim Ve Teknoloji Dergisi(27), 942-949. https://doi.org/10.31590/ejosat.963097