Research Article
BibTex RIS Cite

Sucul Bitki Lemna minor L. Üzerinde Fito-Sentezlenmiş Gümüş Nanopartikül Toksisitesi Etkisi

Year 2021, , 1087 - 1094, 30.11.2021
https://doi.org/10.31590/ejosat.980995

Abstract

Gümüş nanopartiküller (AgNP) üretilen tüm nanomalzemelerin yaklaşık %55'ini oluşturmakta ve tüketici ürünlerinde yaygın olarak kullanılmaktadır. Bu nanopartiküllerin üretim, kullanım ve bertaraf sırasında su ortamına salınması kaçınılmazdır. Bu çalışmada, fito-sentez yoluyla elde edilen AgNP'lerin Lemna minor L. (su mercimeği) bitkileri üzerinde subakut toksisitesi araştırılmıştır. Bitki stok kültürleri, OECD 221 yönergesine göre iklim odasında yetiştirilmiştir. 8 haftalık alışma aşamasından sonra, bitkilere 7 ve 14 gün boyunca 0.005 ila 50 mg L-1 arasında değişen AgNP konsantrasyonları uygulanmıştır. Defne (Laurus nobilis L.) ekstraktı kullanılarak elde edilen gümüş nanopartiküllerin oluşumu UV-VIS spektrofotometrik ölçümüyle belirlenmiştir. Fito-sentez yöntemiyle sentezlenen AgNP'ler, Fourier transform infrared spectroscopy (FT-IR), Zeta boyut ve potansiyeli, Taramalı elektron mikroskobu Inductively Coupled Plasma Kütle Spektrometrisi (ICP) and Scanning electron microscopy (SEM-EDS) analizi ile karakterize edilmiştir. Analiz sonuçları, AgNP'lerin homojen olarak dağıldığını, ortalama 34 nm büyüklüğünde küresel şekilli olduğu ve bitkisel içerik ile kaplandığını göstermiştir. Uygulanan AgNP konsantrasyonundaki artış yaprak sayılarında azalmaya neden olmuştur. Büyüme inhibisyonu verileri, fito-sentezlenen AgNP’nin EC50 değerinin 4.78 mg L-1 ve 7 gün boyunca gözlemlenen en düşük etki konsantrasyonunun (LOEC) 0.5 mg L-1 olduğunu göstermiştir. LOEC seviyesinin altındaki AgNP konsantrasyonlarında, 7 günlük uygulama sonrasında en yüksek AgNP konsantrasyonu (0.5 mg) büyüme oranınında %20.07'lik önemli bir düşüşe neden olurken, 14 günlük uygulama sonucu büyüme oranının %4.03 azaldığı belirlenmiştir. Benzer bir eğilim, bitkilerin taze ve kuru ağırlıklarında gözlenmiştir. Bu durum, uzun maruz kalma süresinin (14 gün) bitkide tolerans mekanizmasının tetikleyebileceğini, klorofil a/b ve karotenoid içeriği sonuçları ile de uyumlu olarak, işaret etmektedir. Yüksek NOEC, LOEC ve EC50 değerleriyle, fito-sentezlenmiş AgNP kullanımının daha düşük çevresel toksisiteye yol açabileceği sonucuna varılmıştır.

Supporting Institution

This work was supported by Ege University Scientific Research Projects Coordination Unit.

Project Number

FYL-2018-20032

Thanks

Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü / Ege University Scientific Research Projects Coordination Unit.

References

  • Ahmad, A., Wei, Y., Syed, F., Tahir, K., Rehman, A. U., Khan, A., Yuan, Q. (2017). The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microbial Pathogenesis, 102, 133–142. https://doi.org/10.1016/j.micpath.2016.11.030.
  • Arnon, D. I., 1949. Copper enzyme polyphenoloxides in isolated chloroplast in Beta vulgaris. Plant Physiology., 24, 1-15.
  • Argast, A. & Tennis III, C. F. (2004). A web resource for the study of alkali feldspars and perthitic textures using light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Journal of Geoscience Education, 52(3), 213-217.
  • Arshadi, E., Sedaghat, S. & Moradi, O. (2018). Green synthesis and characterization of silver nanoparticles using fructose. Asian Journal of Green Chemistry, 2(1), 41-50.
  • Ayisigi, M., Cokislerel, A., Kucukcobanoglu, Y., Yalcin, T., & Aktas, L. Y. (2020). Green synthesized silver nanoparticles for an effective control on soft rodisease pathogen Pectobacterium carotovorum and growth stimulation in pepper. Bulgarian Journal of Agricultural Science, 26, 574-584.
  • Brain, RA., & Solomon, KR. (2007). A protocol for conducting 7-day daily renewal tests with Lemna gibba. Nature Protocols 2, 4.
  • Bundschuh, M., Filser, J., Lüderwald, S., McKee, M. S., Metreveli, G., Schaumann, G. E., … Wagner, S. (2018). Nanoparticles in the environment: where do we come from, where do we go to? Environmental Sciences Europe, 30(1). https://doi.org/10.1186/s12302-018-0132-6
  • Chew BP. and Park JS., (2004). Functions and Actions of Retinoids and Carotenoids: Building on the Vision of James Allen Olson: Foreword. Journal of Nutrition, 134(1), 257–261.
  • Chowdhury, N. R., MacGregor-Ramiasa, M., Zilm, P., Majewski, P. & Vasilev, K. (2016). ‘Chocolate’silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity. Journal of Colloid and Interface Science, 482, 151-158.
  • Costa, D., Valente, A. J., Queiroz, J. A. & Sousa, Â. (2018). Finding the ideal polyethylenimine-plasmid DNA system for co-delivery of payloads in cancer therapy. Colloids and Surfaces B: Biointerfaces, 170, 627-636.
  • Dewez, D., Goltsev, V., Kalaji, H.M., Oukarroum, A., 2018. Inhibitory effects of silver nano- particles on photosystem II performance in Lemna gibba probed by chlorophyll fluo- rescence. Curr. Plant Biol. 16, 15–21. https://doi.org/10.1016/j.cpb.2018.11.006.
  • Edison, T. J. I. & Sethuraman, M. G. (2012). Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochemistry, 47(9), 1351-1357.
  • Gubbins, E.J., Batty, L.C., Lead, J.R., 2011. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ. Pollut. 159, 1551–1559. https://doi.org/10.1016/j. envpol.2011.03.002 He, D.; Jones, A.M.; Garg, S.; Pham, A.N.; Waite, T.D. 2011. Silver nanoparticle–reactive oxygen species interactions: Application of a charging-discharging model. J. Phys. Chem. C. 115, 5461–5468
  • Huo, Y., Wang, M., Wei, Y., Xia, Z., 2016. Overexpression of the maize psbA gene en- hances drought tolerance through regulating antioxidant system, photosynthetic capability, and stress defense gene expression in tobacco. Front. Plant Sci. 6, 1223.
  • Jiang, J., Oberdörster, G., Biswas, P., 2009. Characterization of size, surface charge, and agglomeration state of nanoparticles dispersions for toxicological studies. Journal of Nanoparticle Research 11, 77-89.
  • Jiang, H.-S.; Li, M.; Chang, F.-Y.; Li, W.; Yin, L.-Y. 2012. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem. 31, 1880–1886.
  • Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217–227. https://doi.org/10.1016/j.jrras.2015.10.002
  • Kaveh, R., Li, Y.S., Ranjbar, S., Tehrani, R., Brueck, C.L., Van Aken, B., 2013. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ. Sci. Technol. 47 (18), 10637–10644.
  • Khoshnamvand, M., Ashtiani, S., Chen, Y., & Liu, J. (2020). Impacts of organic matter on the toxicity of biosynthesized silver nanoparticles to green microalgae Chlorella vulgaris. Environmental Research, 185, 109433. https://doi.org/10.1016/j.envres.2020.109433
  • Khosravi-Katuli, K., Shabani, A., Paknejad, H., & Imanpoor, M. R. (2018). Comparative toxicity of silver nanoparticle and ionic silver in juvenile common carp (Cyprinus carpio): Accumulation, physiology and histopathology. Journal of Hazardous Materials, 359(July), 373–381. https://doi.org/10.1016/j.jhazmat.2018.07.064
  • Kim, E., Kim, S. H., Kim, H. C., Lee, S. G., Lee, S. J., & Jeong, S. W. (2011). Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicology and Environmental Health Sciences, 3(1), 1–6. https://doi.org/10.1007/s13530-011-0071-8
  • Lalau, C. M., Simioni, C., Vicentini, D. S., Ouriques, L. C., Mohedano, R. A., Puerari, R. C., & Matias, W. G. (2020). Toxicological effects of AgNPs on duckweed (Landoltia punctata). Science of the Total Environment, 710, 136318. https://doi.org/10.1016/j.scitotenv.2019.136318
  • Minogiannis, P., Valenti, M., Kati, V., Kalantzi, O., Biskos, G., 2019. Toxicity of pure silver nanoparticles produced by spark ablation on the aquatic plant Lemna minor. J. Aerosol Sci. 128, 17–21. https://doi.org/10.1016/j.jaerosci.2018.11.003.
  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A. 2013.Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf. 88:48–54
  • Mylona, Z., Panteris, E., Kevrekidis, T., & Malea, P. (2020). Silver nanoparticle toxicity effect on the seagrass Halophila stipulacea. Ecotoxicology and Environmental Safety, 189(November 2019), 109925. https://doi.org/10.1016/j.ecoenv.2019.109925
  • Newton, K.M., Puppala, H.L., Kitchens, C.L., Colvin, V.L., Klaine, S.J., 2013. Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. Environ. Toxicol. Chem. 32, 2356–2364.
  • OECD, 2002. Guidelines for the testing of chemicals: revised proposal for a new guideline 221—Lemna sp. Growth Inhibition Test.
  • OECD Guidelines for the testing of Chemicals 221. 2006. Lemna sp. Growth Inhibition Test.
  • Oukarroum, A., Barhoumi, L., 2013. Silver nanoparticle toxicity effect on growth and cellu- lar viability of the aquatic plant Lemna gibba. Environ. Toxicol. Chem 32, 902–907. https://doi.org/10.1002/etc.2131.
  • Qian, H., Peng, X., Han, X., Ren, J., Sun, L. & Fu, Z. (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Sciences, 25(9), 1947-1956.
  • Quadros, M. E., & Marr, L. C. (2011). Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environmental Science and Technology, 45(24), 10713–10719. https://doi.org/10.1021/es202770m
  • Van Koetsem, F., Xiao, Y., Luo, Z., & Du Laing, G. (2016). Impact of water composition on association of Ag and CeO2 nanoparticles with aquatic macrophyte Elodea canadensis. Environmental Science and Pollution Research, 23(6), 5277–5287. https://doi.org/10.1007/s11356-015-5708-8
  • Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., & Hull, D. R. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6(1), 1769–1780. https://doi.org/10.3762/bjnano.6.181
  • Reinfelder, J.R., Chang, S.I., 1999. Speciation and microalgal bioavailability of inor- ganic silver. Environmental Science and Technology 33, 1860-1863
  • Salama HMH. 2012.Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotech. 3:190–197.
  • Üçüncü, E., Özkan, A.D., Kurs, C., Ülger, Z.E., Ölmez, T.T., 2014. Chemosphere Effects of Laser Ablated Silver Nanoparticles on Lemna minor 108., pp. 251–257. https://doi. org/10.1016/j.chemosphere.2014.01.049.

Phyto-Synthesized Silver Nanoparticle Toxicity Effect on Aquatic Plant Lemna minor L.

Year 2021, , 1087 - 1094, 30.11.2021
https://doi.org/10.31590/ejosat.980995

Abstract

Silver nanoparticles (AgNP) are made up about 55% of all nanomaterials produced and are widely used in consumer products. Its is inevitable that these particles are released to the aquatic environment during production, use and disposal. In this study, subacute toxicity of AgNPs obtained by phyto-synthesis was investigated on Lemna minor L. (duckweed) plants. Plant stock cultures were grown in the climate room according to OECD 221 guidelines. After 8 weeks of acclimation, the plants were treated with AgNP concentrations ranging from 0.005 to 50 mg L−1 for 7- and 14-days. The formation of silver nanoparticles obtained from laurel (Laurus nobilis L.) extract was determined by UV-VIS spectrophotometric measurements. The AgNPs synthesized by the phyto-synthesis method were characterized by Fourier transform infrared spectroscopy (FT-IR), Zeta size and potential, Inductively Coupled Plasma Mass Spectrometry and Scanning electron microscopy (SEM-EDS) analysis. The analysis results show that AgNPs are homogeneously distributed, spherical in shape with an average size of 34 nm and coated with phyto-content. The increase in AgNP concentration caused a decrease in frond numbers. Growth inhibition data showed that the EC50 value of phyto-synthesized AgNP was 4.78 mg L-1 and the lowest observed effect concentration (LOEC) was 0.5 mg L-1 for 7-days. AgNP concentrations below LOEC level (0.05, to 0.5 mg L-1) caused a significant decrease in growth rate by 20.07% after 7 days of exposure while it was found 4.03% for 14-days treatment at the highest AgNP concentration (0.5 mg L-1). Similar trend was observed in fresh-and dry weight of plants indicating prolonged exposure time triggering tolerance mechanism which was corroborated by chlorophyll a/b and carotenoids content results. Based on higher NOEC, LOEC and EC50 values, phyto-synthesized AgNP usage may lead less environmental toxicity.

Project Number

FYL-2018-20032

References

  • Ahmad, A., Wei, Y., Syed, F., Tahir, K., Rehman, A. U., Khan, A., Yuan, Q. (2017). The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles. Microbial Pathogenesis, 102, 133–142. https://doi.org/10.1016/j.micpath.2016.11.030.
  • Arnon, D. I., 1949. Copper enzyme polyphenoloxides in isolated chloroplast in Beta vulgaris. Plant Physiology., 24, 1-15.
  • Argast, A. & Tennis III, C. F. (2004). A web resource for the study of alkali feldspars and perthitic textures using light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. Journal of Geoscience Education, 52(3), 213-217.
  • Arshadi, E., Sedaghat, S. & Moradi, O. (2018). Green synthesis and characterization of silver nanoparticles using fructose. Asian Journal of Green Chemistry, 2(1), 41-50.
  • Ayisigi, M., Cokislerel, A., Kucukcobanoglu, Y., Yalcin, T., & Aktas, L. Y. (2020). Green synthesized silver nanoparticles for an effective control on soft rodisease pathogen Pectobacterium carotovorum and growth stimulation in pepper. Bulgarian Journal of Agricultural Science, 26, 574-584.
  • Brain, RA., & Solomon, KR. (2007). A protocol for conducting 7-day daily renewal tests with Lemna gibba. Nature Protocols 2, 4.
  • Bundschuh, M., Filser, J., Lüderwald, S., McKee, M. S., Metreveli, G., Schaumann, G. E., … Wagner, S. (2018). Nanoparticles in the environment: where do we come from, where do we go to? Environmental Sciences Europe, 30(1). https://doi.org/10.1186/s12302-018-0132-6
  • Chew BP. and Park JS., (2004). Functions and Actions of Retinoids and Carotenoids: Building on the Vision of James Allen Olson: Foreword. Journal of Nutrition, 134(1), 257–261.
  • Chowdhury, N. R., MacGregor-Ramiasa, M., Zilm, P., Majewski, P. & Vasilev, K. (2016). ‘Chocolate’silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity. Journal of Colloid and Interface Science, 482, 151-158.
  • Costa, D., Valente, A. J., Queiroz, J. A. & Sousa, Â. (2018). Finding the ideal polyethylenimine-plasmid DNA system for co-delivery of payloads in cancer therapy. Colloids and Surfaces B: Biointerfaces, 170, 627-636.
  • Dewez, D., Goltsev, V., Kalaji, H.M., Oukarroum, A., 2018. Inhibitory effects of silver nano- particles on photosystem II performance in Lemna gibba probed by chlorophyll fluo- rescence. Curr. Plant Biol. 16, 15–21. https://doi.org/10.1016/j.cpb.2018.11.006.
  • Edison, T. J. I. & Sethuraman, M. G. (2012). Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochemistry, 47(9), 1351-1357.
  • Gubbins, E.J., Batty, L.C., Lead, J.R., 2011. Phytotoxicity of silver nanoparticles to Lemna minor L. Environ. Pollut. 159, 1551–1559. https://doi.org/10.1016/j. envpol.2011.03.002 He, D.; Jones, A.M.; Garg, S.; Pham, A.N.; Waite, T.D. 2011. Silver nanoparticle–reactive oxygen species interactions: Application of a charging-discharging model. J. Phys. Chem. C. 115, 5461–5468
  • Huo, Y., Wang, M., Wei, Y., Xia, Z., 2016. Overexpression of the maize psbA gene en- hances drought tolerance through regulating antioxidant system, photosynthetic capability, and stress defense gene expression in tobacco. Front. Plant Sci. 6, 1223.
  • Jiang, J., Oberdörster, G., Biswas, P., 2009. Characterization of size, surface charge, and agglomeration state of nanoparticles dispersions for toxicological studies. Journal of Nanoparticle Research 11, 77-89.
  • Jiang, H.-S.; Li, M.; Chang, F.-Y.; Li, W.; Yin, L.-Y. 2012. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem. 31, 1880–1886.
  • Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217–227. https://doi.org/10.1016/j.jrras.2015.10.002
  • Kaveh, R., Li, Y.S., Ranjbar, S., Tehrani, R., Brueck, C.L., Van Aken, B., 2013. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ. Sci. Technol. 47 (18), 10637–10644.
  • Khoshnamvand, M., Ashtiani, S., Chen, Y., & Liu, J. (2020). Impacts of organic matter on the toxicity of biosynthesized silver nanoparticles to green microalgae Chlorella vulgaris. Environmental Research, 185, 109433. https://doi.org/10.1016/j.envres.2020.109433
  • Khosravi-Katuli, K., Shabani, A., Paknejad, H., & Imanpoor, M. R. (2018). Comparative toxicity of silver nanoparticle and ionic silver in juvenile common carp (Cyprinus carpio): Accumulation, physiology and histopathology. Journal of Hazardous Materials, 359(July), 373–381. https://doi.org/10.1016/j.jhazmat.2018.07.064
  • Kim, E., Kim, S. H., Kim, H. C., Lee, S. G., Lee, S. J., & Jeong, S. W. (2011). Growth inhibition of aquatic plant caused by silver and titanium oxide nanoparticles. Toxicology and Environmental Health Sciences, 3(1), 1–6. https://doi.org/10.1007/s13530-011-0071-8
  • Lalau, C. M., Simioni, C., Vicentini, D. S., Ouriques, L. C., Mohedano, R. A., Puerari, R. C., & Matias, W. G. (2020). Toxicological effects of AgNPs on duckweed (Landoltia punctata). Science of the Total Environment, 710, 136318. https://doi.org/10.1016/j.scitotenv.2019.136318
  • Minogiannis, P., Valenti, M., Kati, V., Kalantzi, O., Biskos, G., 2019. Toxicity of pure silver nanoparticles produced by spark ablation on the aquatic plant Lemna minor. J. Aerosol Sci. 128, 17–21. https://doi.org/10.1016/j.jaerosci.2018.11.003.
  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A. 2013.Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf. 88:48–54
  • Mylona, Z., Panteris, E., Kevrekidis, T., & Malea, P. (2020). Silver nanoparticle toxicity effect on the seagrass Halophila stipulacea. Ecotoxicology and Environmental Safety, 189(November 2019), 109925. https://doi.org/10.1016/j.ecoenv.2019.109925
  • Newton, K.M., Puppala, H.L., Kitchens, C.L., Colvin, V.L., Klaine, S.J., 2013. Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. Environ. Toxicol. Chem. 32, 2356–2364.
  • OECD, 2002. Guidelines for the testing of chemicals: revised proposal for a new guideline 221—Lemna sp. Growth Inhibition Test.
  • OECD Guidelines for the testing of Chemicals 221. 2006. Lemna sp. Growth Inhibition Test.
  • Oukarroum, A., Barhoumi, L., 2013. Silver nanoparticle toxicity effect on growth and cellu- lar viability of the aquatic plant Lemna gibba. Environ. Toxicol. Chem 32, 902–907. https://doi.org/10.1002/etc.2131.
  • Qian, H., Peng, X., Han, X., Ren, J., Sun, L. & Fu, Z. (2013). Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. Journal of Environmental Sciences, 25(9), 1947-1956.
  • Quadros, M. E., & Marr, L. C. (2011). Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environmental Science and Technology, 45(24), 10713–10719. https://doi.org/10.1021/es202770m
  • Van Koetsem, F., Xiao, Y., Luo, Z., & Du Laing, G. (2016). Impact of water composition on association of Ag and CeO2 nanoparticles with aquatic macrophyte Elodea canadensis. Environmental Science and Pollution Research, 23(6), 5277–5287. https://doi.org/10.1007/s11356-015-5708-8
  • Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., & Hull, D. R. (2015). Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 6(1), 1769–1780. https://doi.org/10.3762/bjnano.6.181
  • Reinfelder, J.R., Chang, S.I., 1999. Speciation and microalgal bioavailability of inor- ganic silver. Environmental Science and Technology 33, 1860-1863
  • Salama HMH. 2012.Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotech. 3:190–197.
  • Üçüncü, E., Özkan, A.D., Kurs, C., Ülger, Z.E., Ölmez, T.T., 2014. Chemosphere Effects of Laser Ablated Silver Nanoparticles on Lemna minor 108., pp. 251–257. https://doi. org/10.1016/j.chemosphere.2014.01.049.
There are 36 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Zeynep İnci Koçer This is me 0000-0002-2932-6560

Melisa Ayışığı 0000-0002-9243-2681

Selin Haseki This is me 0000-0002-6941-8910

Lale Aktaş 0000-0003-0815-8470

Project Number FYL-2018-20032
Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Koçer, Z. İ., Ayışığı, M., Haseki, S., Aktaş, L. (2021). Phyto-Synthesized Silver Nanoparticle Toxicity Effect on Aquatic Plant Lemna minor L. Avrupa Bilim Ve Teknoloji Dergisi(27), 1087-1094. https://doi.org/10.31590/ejosat.980995