Research Article
BibTex RIS Cite

İleri Glikasyon Son Ürünlerinin (AGEs) Öncüllerinin in Vitro Biyoerişilebilirliklerinin Bazı Gıdalarda Belirlenmesi

Year 2021, , 598 - 604, 30.11.2021
https://doi.org/10.31590/ejosat.990119

Abstract

İleri glikasyon son ürünlerinin (AGE'ler) öncüleri olan glioksal (GO) ve metilglioksal (MGO) hem gıdalarda hemde insan vücudunda oluşabilmektedir. α-dikarbonil bileşikleri olan GO ve MGO proteinlerin amino grubu ile reaksiyona girmesiyle AGE'ler oluşmaktadır. AGE bileşikleri kanser ve diyabet gibi birçok kronik hastalığın oluşum nedenleri arasında gösterilmektedir. AGE bileşikleri protein ve lipidlerin peroksidasyonu, Maillard reaksiyonları ve gıdaların işlenmesi sırasında oluşabilmektedir. Bu çalışmanın amacı, bisküvi, cips, kahvaltılık gevrek ve süt ürünlerinde bulunan GO ve MGO’un in vitro gastrointestinal sindirim sisteminde biyoerişilebilirliğini belirlemek ve gıda çesitlerine göre oluşumlarını değerlendirmektir. Genel olarak bisküvi ve kahvaltılık gevrek örneklerinin GO ve MGO biyoerişilebilirliği %100’ün üzerinde olduğu görülmüştür. Bisküvi örneklerinden glikoz miktarı yüksek olan örneğin GO biyoerişilebilirliği daha yüksek bulunmuştur. Cips örneklerinde ise GO’un biyoerişilebilirliği %100'ün altında iken MGO biyoerişilebilirliği %100'ün üzerinde bulunmuştur. Süt örneklerinde ise biyoerişilebilirlik hem GO hem de MGO’da %100'ün altında olduğu görülmüştür. Bu çalışmanın sonuçlarına göre yüksek yağ ve tuz in vitro ortamda lipidlerin peroksidasyonuna neden olabileceği ve bunun sonucunda α-dikarbonil bileşiklerinin oluşabileceği düşünülmektedir. Gıdalardaki yağ, tuz ve serbest şeker içeriğinin azaltılması in vitro gastrointestinal sistemde daha düşük GO ve MGO oluşumunu sağlayabilir. Bu sonuçları desteklemek için yeni çalışmalara ihtiyaç vardır.

References

  • Amrein, T. M., Andres, L., Manzardo, G. G., & Amadò, R. (2006). Investigations on the promoting effect of ammonium hydrogencarbonate on the formation of acrylamide in model systems. Journal of agricultural & food chemistry, 54(26), 10253-10261.
  • Cengiz, S., Kişmiroğlu, C., Cebi, N., Catak, J., & Yaman, M. (2020). Determination of the most potent precursors of advanced glycation end products (AGEs) in chips, crackers, and breakfast cereals by high performance liquid chromatography (HPLC) using precolumn derivatization with 4-nitro-1, 2-phenlenediamine. Microchemical Journal, 158, 105170.
  • Henle, T. (2005). Protein-bound advanced glycation end products (AGEs) as bioactive amino acid derivatives in foods. Amino acids, 29(4), 313-322.
  • Hidalgo, F. J., León, M. M., & Zamora, R. (2016). Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures. Food chemistry, 209, 256-261.
  • Hrynets, Y., Ndagijimana, M., & Betti, M. (2015). Studies on the formation of Maillard and caramelization products from glucosamine incubated at 37 C. Journal of agricultural & food chemistry, 63(27), 6249-6261.
  • Luevano-Contreras, C., & Chapman-Novakofski, K. (2010). Dietary advanced glycation end products and aging. Nutrients, 2(12), 1247-1265. Mariutti, L. R., & Bragagnolo, N. (2017). Influence of salt on lipid oxidation in meat and seafood products: A review. Food Research International, 94, 90-100.
  • Martinez-Saez, N., Fernandez-Gomez, B., Cai, W., Uribarri, J., & del Castillo, M. D. (2019). In vitro formation of Maillard reaction products during simulated digestion of meal-resembling systems. Food Research International, 118, 72-80.
  • Nowotny, K., Jung, T., Höhn, A., Weber, D., & Grune, T. (2015). Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 5(1), 194-222.
  • Papetti, A., Mascherpa, D., & Gazzani, G. (2014). Free α-dicarbonyl compounds in coffee, barley coffee and soy sauce and effects of in vitro digestion. Food chemistry, 164, 259-265.
  • Papetti, A., Mascherpa, D., Marrubini, G., & Gazzani, G. (2013). Effect of In Vitro Digestion on Free α‐Dicarbonyl Compounds in Balsamic Vinegars. Journal of food science, 78(4), 514-519.
  • Peng, X., Ma, J., Cheng, K. W., Jiang, Y., Chen, F., & Wang, M. (2010). The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chemistry, 119(1), 49-53.
  • Poulsen, M. W., Hedegaard, R. V., Andersen, J. M., de Courten, B., Bügel, S., Nielsen, J.,Skibsted, L. H., & Dragsted, L. O. (2013). Advanced glycation endproducts in food and their effects on health. Food & Chemical Toxicology, 60, 10–37.
  • Rabbani, N., & Thornalley, P. J. (2014). The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes, 63(1), 50-52.
  • Richmond, M. L., Brandao, S. C., Gray, J. I., Markakis, P., & Stine, C. M. (1981). Analysis of simple sugars and sorbitol in fruit by high-performance liquid chromatography. Journal of agricultural & Food chemistry, 29(1), 4-7.
  • Sansano, M., Heredia, A., Peinado, I., & Andrés, A. (2017). Dietary acrylamide: What happens during digestion. Food chemistry, 237, 58-64. O'Brien, J., Nursten, H. E., Ames, J. M., Crabbe, M. J. C., & Crabbe, J. (Eds.). (1998). The Maillard reaction in foods and medicine (Vol. 223). Woodhead Publishing.
  • Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., Yong, A., Striker, G.E., & Vlassara, H. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association, 110(6), 911-916. Vegarud, G. E., Langsrud, T., & Svenning, C. (2000). Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. British Journal of Nutrition, 84(1), 91-98.
  • Wu, C. H., & Yen, G. C. (2005). Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. Journal of agricultural & food chemistry, 53(8), 3167-3173.
  • Yaman, M., & Mızrak, Ö. F. (2019). Determination and evaluation of in vitro bioaccessibility of the pyridoxal, pyridoxine, and pyridoxamine forms of vitamin B6 in cereal-based baby foods. Food chemistry, 298.
  • Yaman, M., Mızrak, Ö. F., Çatak, J., & Sargın, H. S. (2019). In vitro bioaccessibility of added folic acid in commercially available baby foods formulated with milk and milk products. Food Science and Biotechnology, 28(6), 1837-1844.
  • Yaman, M., Çatak, J., Uğur, H., Gürbüz, M., Belli, İ., Tanyıldız, S. N.,& Yaldız, M. C. (2021). The bioaccessibility of water-soluble vitamins: A review. Trends in Food Science & Technology.
  • Yang, K., Qiang, D., Delaney, S., Mehta, R., Bruce, W.R., & O’Brien, P.J. (2011). Differences in Glyoxal and methylglyoxal metabo lism determine cellular susceptibility to protein carbonylation and cytotoxicity. Chemico-Biological Interactions, 191, 322–9.
  • Yu, L., He, Z., Zeng, M., Zheng, Z., He, J., Wang, M., & Chen, J. (2016). Effects of oxidised linoleic acid on the formation of Nε‐carboxymethyl‐lysine and Nε‐carboxyethyl‐lysine in Maillard reaction system. International journal of food science & technology, 51(3), 742-752.
  • Zamora, R., & Hidalgo, F. J. (2011). The Maillard reaction and lipid oxidation. Lipid Technology, 23(3), 59-62.

Determination of in Vitro Bioaccessibility of Precursors of Advanced Glycation End-Products (AGEs) in Some Foods

Year 2021, , 598 - 604, 30.11.2021
https://doi.org/10.31590/ejosat.990119

Abstract

Glyoxal (GO) and methylglyoxal (MGO), which are the precursors of advanced glycation end products (AGEs), can occur both in food and in the human body. AGEs are formed by the reaction of α-dicarbonyl compounds, GO and MGO, with the amino group of proteins. AGE compounds are shown as the cause of many chronic diseases such as cancer and diabetes. AGE compounds can be formed during oxidation of proteins and lipids, Maillard reactions, and food processing. The aim of this study is to determine the in vitro bioaccessibility of GO and MGO in biscuits, chips, breakfast cereals and milk products and to evaluate their formation according to food types. In general, GO and MGO bioaccessibility in biscuit and breakfast cereal samples were found to be above 100%. GO bioaccessibility of the biscuit sample with high glucose was found to be higher than the other biscuit samples. In the chips samples, the bioaccessibility of GO was below 100%, while the bioaccessibility of MGO was above 100%. In milk samples, it was observed that both GO and MGO bioaccessibility were below 100%. According to the results of this study, it is thought that high fat and salt may cause lipid peroxidation in in vitro and as a result, α-dicarbonyl compounds may be formed. Reducing the fat, salt and free sugar content in foods may result in lower GO and MGO formation in the stimulated gastrointestinal tract. Further studies are needed to support these results.

References

  • Amrein, T. M., Andres, L., Manzardo, G. G., & Amadò, R. (2006). Investigations on the promoting effect of ammonium hydrogencarbonate on the formation of acrylamide in model systems. Journal of agricultural & food chemistry, 54(26), 10253-10261.
  • Cengiz, S., Kişmiroğlu, C., Cebi, N., Catak, J., & Yaman, M. (2020). Determination of the most potent precursors of advanced glycation end products (AGEs) in chips, crackers, and breakfast cereals by high performance liquid chromatography (HPLC) using precolumn derivatization with 4-nitro-1, 2-phenlenediamine. Microchemical Journal, 158, 105170.
  • Henle, T. (2005). Protein-bound advanced glycation end products (AGEs) as bioactive amino acid derivatives in foods. Amino acids, 29(4), 313-322.
  • Hidalgo, F. J., León, M. M., & Zamora, R. (2016). Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures. Food chemistry, 209, 256-261.
  • Hrynets, Y., Ndagijimana, M., & Betti, M. (2015). Studies on the formation of Maillard and caramelization products from glucosamine incubated at 37 C. Journal of agricultural & food chemistry, 63(27), 6249-6261.
  • Luevano-Contreras, C., & Chapman-Novakofski, K. (2010). Dietary advanced glycation end products and aging. Nutrients, 2(12), 1247-1265. Mariutti, L. R., & Bragagnolo, N. (2017). Influence of salt on lipid oxidation in meat and seafood products: A review. Food Research International, 94, 90-100.
  • Martinez-Saez, N., Fernandez-Gomez, B., Cai, W., Uribarri, J., & del Castillo, M. D. (2019). In vitro formation of Maillard reaction products during simulated digestion of meal-resembling systems. Food Research International, 118, 72-80.
  • Nowotny, K., Jung, T., Höhn, A., Weber, D., & Grune, T. (2015). Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules, 5(1), 194-222.
  • Papetti, A., Mascherpa, D., & Gazzani, G. (2014). Free α-dicarbonyl compounds in coffee, barley coffee and soy sauce and effects of in vitro digestion. Food chemistry, 164, 259-265.
  • Papetti, A., Mascherpa, D., Marrubini, G., & Gazzani, G. (2013). Effect of In Vitro Digestion on Free α‐Dicarbonyl Compounds in Balsamic Vinegars. Journal of food science, 78(4), 514-519.
  • Peng, X., Ma, J., Cheng, K. W., Jiang, Y., Chen, F., & Wang, M. (2010). The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chemistry, 119(1), 49-53.
  • Poulsen, M. W., Hedegaard, R. V., Andersen, J. M., de Courten, B., Bügel, S., Nielsen, J.,Skibsted, L. H., & Dragsted, L. O. (2013). Advanced glycation endproducts in food and their effects on health. Food & Chemical Toxicology, 60, 10–37.
  • Rabbani, N., & Thornalley, P. J. (2014). The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes, 63(1), 50-52.
  • Richmond, M. L., Brandao, S. C., Gray, J. I., Markakis, P., & Stine, C. M. (1981). Analysis of simple sugars and sorbitol in fruit by high-performance liquid chromatography. Journal of agricultural & Food chemistry, 29(1), 4-7.
  • Sansano, M., Heredia, A., Peinado, I., & Andrés, A. (2017). Dietary acrylamide: What happens during digestion. Food chemistry, 237, 58-64. O'Brien, J., Nursten, H. E., Ames, J. M., Crabbe, M. J. C., & Crabbe, J. (Eds.). (1998). The Maillard reaction in foods and medicine (Vol. 223). Woodhead Publishing.
  • Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X., Pyzik, R., Yong, A., Striker, G.E., & Vlassara, H. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association, 110(6), 911-916. Vegarud, G. E., Langsrud, T., & Svenning, C. (2000). Mineral-binding milk proteins and peptides; occurrence, biochemical and technological characteristics. British Journal of Nutrition, 84(1), 91-98.
  • Wu, C. H., & Yen, G. C. (2005). Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts. Journal of agricultural & food chemistry, 53(8), 3167-3173.
  • Yaman, M., & Mızrak, Ö. F. (2019). Determination and evaluation of in vitro bioaccessibility of the pyridoxal, pyridoxine, and pyridoxamine forms of vitamin B6 in cereal-based baby foods. Food chemistry, 298.
  • Yaman, M., Mızrak, Ö. F., Çatak, J., & Sargın, H. S. (2019). In vitro bioaccessibility of added folic acid in commercially available baby foods formulated with milk and milk products. Food Science and Biotechnology, 28(6), 1837-1844.
  • Yaman, M., Çatak, J., Uğur, H., Gürbüz, M., Belli, İ., Tanyıldız, S. N.,& Yaldız, M. C. (2021). The bioaccessibility of water-soluble vitamins: A review. Trends in Food Science & Technology.
  • Yang, K., Qiang, D., Delaney, S., Mehta, R., Bruce, W.R., & O’Brien, P.J. (2011). Differences in Glyoxal and methylglyoxal metabo lism determine cellular susceptibility to protein carbonylation and cytotoxicity. Chemico-Biological Interactions, 191, 322–9.
  • Yu, L., He, Z., Zeng, M., Zheng, Z., He, J., Wang, M., & Chen, J. (2016). Effects of oxidised linoleic acid on the formation of Nε‐carboxymethyl‐lysine and Nε‐carboxyethyl‐lysine in Maillard reaction system. International journal of food science & technology, 51(3), 742-752.
  • Zamora, R., & Hidalgo, F. J. (2011). The Maillard reaction and lipid oxidation. Lipid Technology, 23(3), 59-62.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Yaman 0000-0001-9692-0204

Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Yaman, M. (2021). İleri Glikasyon Son Ürünlerinin (AGEs) Öncüllerinin in Vitro Biyoerişilebilirliklerinin Bazı Gıdalarda Belirlenmesi. Avrupa Bilim Ve Teknoloji Dergisi(27), 598-604. https://doi.org/10.31590/ejosat.990119