Research Article
BibTex RIS Cite

Amplitude Responses at Flexural Eigenmodes in Dynamic Acoustic Force Measurement Using Multimodal Excitation Schemes

Year 2021, , 120 - 125, 30.11.2021
https://doi.org/10.31590/ejosat.991652

Abstract

In this paper, we present a computational investigation to study amplitude sensitivities to acoustic forces in a wide frequency range. We utilize bimodal, trimodal, and tetramodal excitation schemes for the actuation of the Atomic Force Microscopy (AFM) micro-cantilever in the presence of dynamic acoustic forces. In multimodal operations, the micro-cantilever is driven by applying external excitation forces at eigenmode angular frequencies. The Equation of Motion (EOM) is constructed in the consideration of the driven and damped harmonic oscillator as a model and solved numerically to obtain the deflections of the micro-cantilever at flexural eigenmodes. In this current work, time-domain responses of the micro-cantilever to acoustic forces are introduced for different excitation schemes so that free oscillations are compared with the oscillations of the driven micro-cantilever undergoing acoustic forces. Then, we evaluate the results of amplitude responses at the first four eigenmodes with respect to acoustic force frequencies for diverse force strengths. For our case, we obtain the amplitude response at the fourth eigenmode of around 0.303 nm for the force strength of 2900 pN at the frequency of 1740 kHz. This result proves that acoustic forces at megahertz frequencies are measured by using resonant AFM micro-cantilever under tetramodal operation. Therefore, multimodal excitation schemes can be applied to enhance the amplitude sensitivities to dynamic acoustic forces.

References

  • Saboonchi, H., & Ozevin D. (2013, August). MEMS acoustic emission transducers designed with high aspect ratio geometry. Smart Materials and Structures, 22(9), 095006.
  • Feng, G. H., Tsai, M. Y., & Jeng, Y. R. (2012, December). A micromachined, high signal-to-noise ratio, acoustic emission sensor and its application to monitor dynamic wear. Sensors and Actuators A: Physical, 188(1), 56-65.
  • Feng, G. H., & Tsai, M. Y. (2010, July). Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer. Sensors and Actuators A: Physical, 162(1), 100-106.
  • Lee, J. R., & Tsuda, H. (2005, November). A novel fiber bragg grating acoustic emission sensor head for mechanical tests. Scripta Materilia, 53(10), 1181-1186.
  • De Groot, P. J., Wijnen, P. A. M., & Janssen, R. B. F. (1995, August). Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites. Composite Science and Technology, 55(4), 405-412.
  • Guo, B., Song, S., Ghalambor, A., & Lin, T. R. (2013, July). An Introduction to Condition-Based Maintenance. Offshore Pipelines (pp. 257-297). Boston, U.S.A.: Gulf Professional Publishing.
  • Yilmaz, C., Sahin, R., & Topal, E. S. (2021, July). Exploring the static acoustic force sensitivity using AFM micro-cantilever under single- and bimodal-frequency excitation. Measurement Science and Technology, 32(11), 115001.
  • Demirkiran, A., Karakuzu, A., Erkol, H., Torun, H., & Unlu, M. B. (2018, February). Analysis of microcantilevers excited by pulsed-laser-induced photoacoustic waves. Optics Express, 26(4), 4906-4919.
  • Xu, X., & Raman, A. (2007, August). Comparative dynamics of magnetically, acoustically, and brownian motion driven microcantilevers in liquids. Journal of Applied Physics, 102(3), 034303.
  • Takata, K., Sasaki, T., Tanaka, M., Saito, H., Matsuura, D., & Hane, K. (2014, July). Fabrication of Ultrasonic Sensors Using Micro Cantilevers and Characteristic Measurement in Vacuum for Acoustic Emission Sensing. IEEJ Transactions on Sensors and Micromachines, 134(7), 212-217.
  • Solares, S. D., An, S., & Long, C. J. (2014, September). Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air. Beilstein Journal of Nanotechnology, 5(1), 1637-1648.
  • An, S., Solares, S. D., Santos, S., & Ebeling, D. (2014, November). Energy transfer between eigenmodes in multimodal atomic force microscopy. Nanotechnology, 25(47), 475701.
  • Solares, S. D., & Chawla, G. (2010, November). Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode force microscopy. Measurement Science and Technology, 21(12), 125502.
  • Lozano, J. R., & Garcia, R. (2008, February). Theory of Multifrequency Atomic Force Microscopy. Physical Review Letters, 100(7), 076102.
  • Skrzypacz, P., Nurakhmetov, D., & Wei, D. (2019, November). Generalized stiffness and effective mass coefficients for power-law Euler-Bernoulli beams. Acta Mechanica Sinica, 36(1), 160-175.
  • Garcia, R., & Herruzo, E. T. (2012, April). The emergence of multifrequency force microscopy. Nature Nanotechnology, 7(1), 217-226.
  • Svoren, J., Nascak, L., Koleda, P., Barcik, S., & Nemec, M. (2021, August). The circular saw blade body modification by elastic material layer effecting circular saws sound pressure level when idling and cutting. Applied Acoustics, 179(1), 108028.
  • Lopez-Guerra, E. A., Somnath, S., Solares, S. D., Jesse, S., & Ferrini, G. (2019, September). Few-cycle Regime Atomic Force Microscopy. Scientific Reports, 9(1), 12721.

Çok Modlu Tahrik Şemalarının Kullanıldığı Dinamik Akustik Kuvvet Ölçümünde Eğilme Özmodlarındaki Genlik Tepkileri

Year 2021, , 120 - 125, 30.11.2021
https://doi.org/10.31590/ejosat.991652

Abstract

Bu makalede geniş bir frekans aralığındaki akustik kuvvetlere karşı genlik duyarlılıklarını incelemek için hesaplamalı bir araştırma sunmaktayız. Dinamik akustik kuvvetlerin varlığında Atomik Kuvvet Mikroskobu (AKM) mikro konsolunun çalıştırılması için iki modlu, üç modlu ve dört modlu tahrik şemalarını kullanmaktayız. Çok modlu işlemlerde, mikro konsol, özmod açısal frekanslarındaki dış tahrik kuvvetleri uygulanarak sürülmektedir. Hareket Denklemi (HD), sürülen ve sönümlü harmonik osilatörün bir model olarak dikkate alınmasıyla oluşturulmuştur ve mikro konsolun eğilme özmodlarındaki sapmalarını elde etmek için sayısal olarak çözülmüştür. Bu güncel çalışmada mikro konsolun akustik kuvvetlere olan zaman alanındaki tepkileri, farklı tahrik şemaları için sunulmuştur, böylece serbest salınımlar, akustik kuvvetlere maruz kalan ve tahrik edilen mikro konsolun salınımları ile karşılaştırılmıştır. Ardından, çeşitli kuvvet büyüklükleri için akustik kuvvet frekanslarına göre ilk dört özmoddaki genlik tepkilerinin sonuçlarını değerlendirmekteyiz. Bizim durumumuz için 1740 kHz frekansındaki 2900 pN'lik kuvvet büyüklüğü için dördüncü öz modda yaklaşık 0.303 nm'lik bir genlik tepkisi elde etmekteyiz. Bu sonuç megahertz frekanslarındaki akustik kuvvetlerin, tetramodal operasyon altındaki rezonanslı AFM mikro konsol kullanılarak ölçüldüğünü kanıtlamaktadır. Sonuç olarak, dinamik akustik kuvvetlere karşı genlik duyarlılıklarını arttırmak için çok modlu tahrik şemaları uygulanabilmektedir.

References

  • Saboonchi, H., & Ozevin D. (2013, August). MEMS acoustic emission transducers designed with high aspect ratio geometry. Smart Materials and Structures, 22(9), 095006.
  • Feng, G. H., Tsai, M. Y., & Jeng, Y. R. (2012, December). A micromachined, high signal-to-noise ratio, acoustic emission sensor and its application to monitor dynamic wear. Sensors and Actuators A: Physical, 188(1), 56-65.
  • Feng, G. H., & Tsai, M. Y. (2010, July). Acoustic emission sensor with structure-enhanced sensing mechanism based on micro-embossed piezoelectric polymer. Sensors and Actuators A: Physical, 162(1), 100-106.
  • Lee, J. R., & Tsuda, H. (2005, November). A novel fiber bragg grating acoustic emission sensor head for mechanical tests. Scripta Materilia, 53(10), 1181-1186.
  • De Groot, P. J., Wijnen, P. A. M., & Janssen, R. B. F. (1995, August). Real-time frequency determination of acoustic emission for different fracture mechanisms in carbon/epoxy composites. Composite Science and Technology, 55(4), 405-412.
  • Guo, B., Song, S., Ghalambor, A., & Lin, T. R. (2013, July). An Introduction to Condition-Based Maintenance. Offshore Pipelines (pp. 257-297). Boston, U.S.A.: Gulf Professional Publishing.
  • Yilmaz, C., Sahin, R., & Topal, E. S. (2021, July). Exploring the static acoustic force sensitivity using AFM micro-cantilever under single- and bimodal-frequency excitation. Measurement Science and Technology, 32(11), 115001.
  • Demirkiran, A., Karakuzu, A., Erkol, H., Torun, H., & Unlu, M. B. (2018, February). Analysis of microcantilevers excited by pulsed-laser-induced photoacoustic waves. Optics Express, 26(4), 4906-4919.
  • Xu, X., & Raman, A. (2007, August). Comparative dynamics of magnetically, acoustically, and brownian motion driven microcantilevers in liquids. Journal of Applied Physics, 102(3), 034303.
  • Takata, K., Sasaki, T., Tanaka, M., Saito, H., Matsuura, D., & Hane, K. (2014, July). Fabrication of Ultrasonic Sensors Using Micro Cantilevers and Characteristic Measurement in Vacuum for Acoustic Emission Sensing. IEEJ Transactions on Sensors and Micromachines, 134(7), 212-217.
  • Solares, S. D., An, S., & Long, C. J. (2014, September). Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air. Beilstein Journal of Nanotechnology, 5(1), 1637-1648.
  • An, S., Solares, S. D., Santos, S., & Ebeling, D. (2014, November). Energy transfer between eigenmodes in multimodal atomic force microscopy. Nanotechnology, 25(47), 475701.
  • Solares, S. D., & Chawla, G. (2010, November). Frequency response of higher cantilever eigenmodes in bimodal and trimodal tapping mode force microscopy. Measurement Science and Technology, 21(12), 125502.
  • Lozano, J. R., & Garcia, R. (2008, February). Theory of Multifrequency Atomic Force Microscopy. Physical Review Letters, 100(7), 076102.
  • Skrzypacz, P., Nurakhmetov, D., & Wei, D. (2019, November). Generalized stiffness and effective mass coefficients for power-law Euler-Bernoulli beams. Acta Mechanica Sinica, 36(1), 160-175.
  • Garcia, R., & Herruzo, E. T. (2012, April). The emergence of multifrequency force microscopy. Nature Nanotechnology, 7(1), 217-226.
  • Svoren, J., Nascak, L., Koleda, P., Barcik, S., & Nemec, M. (2021, August). The circular saw blade body modification by elastic material layer effecting circular saws sound pressure level when idling and cutting. Applied Acoustics, 179(1), 108028.
  • Lopez-Guerra, E. A., Somnath, S., Solares, S. D., Jesse, S., & Ferrini, G. (2019, September). Few-cycle Regime Atomic Force Microscopy. Scientific Reports, 9(1), 12721.
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Çağrı Yılmaz 0000-0002-2976-1044

Eyüp Sabri Topal 0000-0002-3974-060X

Publication Date November 30, 2021
Published in Issue Year 2021

Cite

APA Yılmaz, Ç., & Topal, E. S. (2021). Çok Modlu Tahrik Şemalarının Kullanıldığı Dinamik Akustik Kuvvet Ölçümünde Eğilme Özmodlarındaki Genlik Tepkileri. Avrupa Bilim Ve Teknoloji Dergisi(28), 120-125. https://doi.org/10.31590/ejosat.991652