Review
BibTex RIS Cite

Biomedical applications of shape memory alloys

Year 2018, Issue: 14, 134 - 144, 31.12.2018
https://doi.org/10.31590/ejosat.429048

Abstract

Shape memory alloys are attractive materials for many engineering applications due to their superior and rare properties compared to conventional alloys. Beside good mechanical properties, good biocompability of NiTi alloys make these materials possible candidates for biomedical industries in addition to engineering applications. They are predicted to be used in biomedical field more widely as the manufacturing and processing costs can be decreased. In this review paper, general properties of shape memory alloys are documented and current/possible applications of these materials in denstistry, ortopedics and general surgery are discussed.

References

  • Wayman CM. and K. Otsuka. 1998. Shape Memory Materials. Cambridge University Press.
  • Acar E, Ozbulut OE and Karaca HE. 2015. Experimental investigation and modeling of the loading rate and temperature dependent superelastic response of a high performance shape-memory alloy, Smart Mater. Struct., (24/7), 75020.
  • Kaya I, Tobe H, Karaca HE, Acar E, and Chumlyakov YI, 2016. Shape Memory Behavior of [111]-Oriented NiTi Single Crystals After Stress-Assisted Aging, Acta Metall. Sin. (English Lett., (29 /3) 282–286.
  • Karaca HE, Saghaian SM, Tobe H, Acar E, Basaran B, Nagasako M, Kainuma R, and Noebe RD. 2014. Diffusionless phase transformation characteristics of Mn75.7Pt24.3, J. Alloys Compd., (589), 412–415.
  • Acar E. 2015. Dynamic mechanical response of a Ni45. 7Ti29. 3Hf20Pd5 alloy, Materiaşs Science and Engineering A, (633) 169-175.
  • Acar E, Karaca HE, Tobe H, Noebe RD and Chumlyakov YI. 2013. Characterization of the shape memory properties of a Ni45.3Ti39.7Hf10Pd5 alloy, J. Alloys Compd., (578) 297–302.
  • Machado LG, Savi MA. 2002. Medical applications of shape memory alloys, Braz J Med Biol res (36 /6) 683-691.
  • Duerig T, Pelton A, Stoeckel D. 1999 An overview of nitinol medical applications. Mater Sci Eng A (273-275),149-160.
  • Es-Souni M, Fischer-Brandies H. 2005 Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem (381),557-567.
  • Ryhanen J. 2000. Biocompatibility evaluation of nickel-titanium shape memory metal alloy [Ph.D. dissertation]. Faculty of Medicine, Department of Surgery, University of Oulu.
  • Wever D, Veldhuizen A, Sanders M, Schakenraad J, Van Horn J. 1997. Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials (18),1115-120.
  • Guidoin R, Zhang Z, Dionne G, Douville Y, King M, Legrand A, et al. 2005. Corrosion of the nitinol wire of endovascular prostheses: does nickel ion impair the devices performance? In: Medlin D, Helmus M, editors. Medical device materials II e proceedings of the materials and processes for medical devices conference St. Paul, MN; 284-289.
  • Barcelos AM, Luna AS, de Assis Ferreira N, Braga AV, do Lago DC, de Senna LF. 2012. Corrosion evaluation of orthodontic wires in artificial saliva solutions by using response surface methodology. Mater Res(16),50-64.
  • Krishna BV, Bose S, Bandyopadhyay A. 2007. Laser processing of net-shape NiTi shape memory alloy. J Metal Mater Trans A (38),1096–1103.
  • Shabalovskaya S, Anderegg J, Van Humbeeck J. 2008. Critical overview of nitinol surfaces and their modifications for medical applications. Acta Biomater (4),447-467.
  • Acar E, Oktay T.2018. Havacılık ve uzay uygulamalarında şekil hafızalı alaşımlar, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, (7 /1), 335-349.[17] Robertson S, Pelton A, Ritchie R. 2012. Mechanical fatigue and fracture of nitinol. Int Mater Rev (57/1),1-37.
  • Hornbogen E. 2004. Review thermo-mechanical fatigue of shape memory alloys. J Mater Sci (39/2), 385-399.
  • Pelton A. 2011. Nitinol fatigue: a review of microstructures and mechanisms. J Mater Eng Perform (20/(4-5),613-617.
  • Petrini L, Dordoni E, Wu W, Guala C, Silvestro C, Migliavacca F, et al. 2013. Fatigue resistance of nitinol peripheral stents. In: 6th ECCOMAS conference on smart structures and materials (SMART2013), Politecnico di Torino, 24-26.
  • Thompson SA. 1999. An overview of nickeletitanium alloys used in dentistry. Int Endod J 33, 297-310.
  • Method and system for orthodontic moving of teeth. 1973. Patent US 4037324.
  • Petrini L, Francesco M, 2011. Biomedical applications of shape memory alloys, Journal of Metallurgy, 501483.
  • Kujala S, Ryh¨anen J, J¨ams¨a T et al.. 2002. Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail. Biomaterials, (23/12) ,2535–2543.
  • Torrisi L and Di Marco G. 2000. Physical characterization of endodontic instruments in NiTi alloy, in Proceedings of the International Symposium on Shape Memory Materials, Materials Science Forum, (327),75–78.
  • Auricchio F, Boatti E, Conti M. 2015. SMA biomedical applications, Shape Memory Alloy Engineering , Butterworth-Heinemann.
  • Montenegro-Santillan R, Alegre-Domingo T, Faus-Matoses V, Faus-Llacer V.2013. An in vitro comparison of cyclic fatigue resistance of ProTaper universal and GT series X files. Med Oral Patol Oral Cir Bucal (18/3),e533536.
  • Pelton, Stockel, Duerig TW. 2000. Medical uses of nitinol. Mater Sci Forum (327-328),63-70.
  • VVAA. 1990. In: Duerig TW, editor. Engineering aspects of shape memory alloys. Butterworth-Heinemann Limited.
  • Tarnita D, Tarnita D, Bolcu D. 2011. In: Fazel-Rezai R, editor. Biomedical engineering e from theory to applications.
  • Dai KR, Hou XK, Sun YH, Tang RG, Qiu SJ, Ni C. 1993. Treatment of intra-articular fractures with shape memory compression staples. Injury (24/10),651-655.
  • Lekston Z, Stroz D, Drusik-Pawlowska M.2012. Preparation and characterization of nitinol bone staples for cranio-maxillofacial surgery. J Mater Eng Perform 21,2650-2656.
  • Shape memory alloy staple. 1999. Patent EP 1173102 B1.
  • Youyi C. 2001. Orthopedic application of NiTi shape memory alloys in China. In: SMST-2000: proceedings of the international conference on shape memory and superelastic technologies.
  • Intramedullary nail to be inserted into a fractured long bone. 2008. Patent EP 2133034 A1.
  • Kujala S, Ryhanen J, Jamsa T, Danilov A, Saaranen J, Pramila A, et al. 2002. Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail. Biomaterials (23/12),25352543.
  • MedShape www.medshape.com. (Consultation: February 2013).
  • Kim D, Eun J, Park J. 2012. Posterior cervical fixation with a nitinol shape memory loop for primary surgical stabilization of atlantoaxial instability: a preliminary report. J Korean Neurosurg Soc (52),21-26.
  • Sanchez Marquez J, Sanchez Perez-Grueso F, Fernandez-Baíllo N, Gil Garay E. 2012. Gradual scoliosis correction over time with shape-memory metal: a preliminary report of an experimental study. Scoliosis ,(7/1).
  • Kuong E, Cheung K, Samartzis D, Yeung K, Luk K. 2012. Superelastic rods: the future of scoliosis curve correction. J Bone Joint Surg Br (94)102.
  • Wang Y, Zheng G, Zhang X, Zhang Y, Xiao S, Wang Z. 2011. Temporary use of shape memory spinal rod in the treatment of scoliosis. Eur Spine J ,(20),118-122.
  • Kianzad S, Amini A, Karkouti S. 2011. Force control of laparoscopy grasper using antagonistic shape memory alloy. In: 2011 1st Middle East conference on biomedical engineering, MECBME 2011, Sharjah; pp. 335-338.
  • Cuschieri A. 1991. Variable curvature shape-memory spatula for laparoscopic surgery. Surg Endosc(;5), 179-181.
  • 2018. (https://www.cookmedical.com/urology/our-history-nitinol-stone-extractors/) [45] Costamagna G, Tringali A, Spicak J, Mutignani M, Shaw J, Roy A, et al. 2012. Treatment of malignant gastroduodenal obstruction with a nitinol self-expanding metal stent: an international prospective multicentre registry. Dig Liver Dis (44),37-43.
  • Rossi P, Bezzi M, Rossi M, Adam A, Chetty N, Roddie M, et al. 1994. Metallic stents in malignant biliary obstruction: results of a multicenter European study of 240 patients. J Vasc Interv Radiol (5),279-285.
  • Talreja J, Eloubeidi M, Sauer B, Al-Awabdy B, Lopes T, Kahaleh M, et al. 2012. Fully covered removable nitinol self-expandable metal stents (SEMS) in malignant strictures of the esophagus: a multicenter analysis. Surg Endosc (269,1664-1669.
  • Kujawski K, Stasiak M, Rysz J. 2012. The evaluation of esophageal stenting complications in palliative treatment of dysphagia related to esophageal cancer. Med Sci Monit (18), 323-329.
  • 2018. (http://centralgaheart.com/need-know-heart-stent/)[50] Allium Medical Solutions Ltd. www.allium-medical.com. (Consultation: May 2013).
  • Matsuzaki A, Morita T, Tokue A, Kobayashi Y. 2004. Clinical study of intraurethral stent (MEMOKATH") for prostatic hyperplasia e study of the changes in uroflowmetry and international prostate symptom score in the early phase after insertion of the stent. Nishinihon J Urol (66), 637-643.
  • Muller B, Deyhle H, Mushkolaj S, Wieland M. 2009. The challenges in artificial muscle research to treat incontinence. Swiss Med Wkly (139),591-595.
  • Yakachi CM, Griffis J, Paıkalova M, Gall K. 2008. Bearing area: A new indication for suture anchor pullout strength?. Journal of Ortopaedic Research. (27/8), 1048-1054.
  • Elahinia ME, Hashemi M, tabesh M. 2012. Manufacturing and processing of NiTi implants: A review , progress in Materials Science, (57), 911-946.[55] Chahine G, Koike M, Okabe T, Smith P, Kovacevic R. 2008. The design and production of Ti–6A1–4V ELI customized dental implants. JOM (60),50–55.
  • Upadhyaya GS. 2002. Powder metallurgy technology. Cambridge International Science Publishing; 68–117 [chapters 6 and 7].
  • Harrysson O, Cansizoglu O, Marcellin-Little D, Cormier D, West H. 2008. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C (28),366–373.

Şekil hafızalı alaşımların biyomedikal uygulamaları

Year 2018, Issue: 14, 134 - 144, 31.12.2018
https://doi.org/10.31590/ejosat.429048

Abstract

Şekil
hafızalı alaşımlar ilgi çekici özelliklerinden dolayı birçok mühendislik
uygulaması için potansiyel oluşturmaktadır. Mühendisliğe ek olarak, özellikle
NiTi şekil hafızalı alaşımlarının mekanik özelliklerinin yanında biyouyumlu
olmasından dolayı biyomedikal alanında da yaygın olarak kullanılabilmekte ve
imalat maliyetlerinin düşmesi ile orantılı olarak kullanım oranının artacağı
tahmin edilmektedir. Bu derleme makalesinde şekil hafızalı alaşımların genel
özelliklerinden kısaca bahsedilmekte ve daha sonra bu alaşımların diş
hekimliği, ortopedi ve genel cerrahi uygulamaları tanıtılmaktadır. 

References

  • Wayman CM. and K. Otsuka. 1998. Shape Memory Materials. Cambridge University Press.
  • Acar E, Ozbulut OE and Karaca HE. 2015. Experimental investigation and modeling of the loading rate and temperature dependent superelastic response of a high performance shape-memory alloy, Smart Mater. Struct., (24/7), 75020.
  • Kaya I, Tobe H, Karaca HE, Acar E, and Chumlyakov YI, 2016. Shape Memory Behavior of [111]-Oriented NiTi Single Crystals After Stress-Assisted Aging, Acta Metall. Sin. (English Lett., (29 /3) 282–286.
  • Karaca HE, Saghaian SM, Tobe H, Acar E, Basaran B, Nagasako M, Kainuma R, and Noebe RD. 2014. Diffusionless phase transformation characteristics of Mn75.7Pt24.3, J. Alloys Compd., (589), 412–415.
  • Acar E. 2015. Dynamic mechanical response of a Ni45. 7Ti29. 3Hf20Pd5 alloy, Materiaşs Science and Engineering A, (633) 169-175.
  • Acar E, Karaca HE, Tobe H, Noebe RD and Chumlyakov YI. 2013. Characterization of the shape memory properties of a Ni45.3Ti39.7Hf10Pd5 alloy, J. Alloys Compd., (578) 297–302.
  • Machado LG, Savi MA. 2002. Medical applications of shape memory alloys, Braz J Med Biol res (36 /6) 683-691.
  • Duerig T, Pelton A, Stoeckel D. 1999 An overview of nitinol medical applications. Mater Sci Eng A (273-275),149-160.
  • Es-Souni M, Fischer-Brandies H. 2005 Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal Bioanal Chem (381),557-567.
  • Ryhanen J. 2000. Biocompatibility evaluation of nickel-titanium shape memory metal alloy [Ph.D. dissertation]. Faculty of Medicine, Department of Surgery, University of Oulu.
  • Wever D, Veldhuizen A, Sanders M, Schakenraad J, Van Horn J. 1997. Cytotoxic, allergic and genotoxic activity of a nickel-titanium alloy. Biomaterials (18),1115-120.
  • Guidoin R, Zhang Z, Dionne G, Douville Y, King M, Legrand A, et al. 2005. Corrosion of the nitinol wire of endovascular prostheses: does nickel ion impair the devices performance? In: Medlin D, Helmus M, editors. Medical device materials II e proceedings of the materials and processes for medical devices conference St. Paul, MN; 284-289.
  • Barcelos AM, Luna AS, de Assis Ferreira N, Braga AV, do Lago DC, de Senna LF. 2012. Corrosion evaluation of orthodontic wires in artificial saliva solutions by using response surface methodology. Mater Res(16),50-64.
  • Krishna BV, Bose S, Bandyopadhyay A. 2007. Laser processing of net-shape NiTi shape memory alloy. J Metal Mater Trans A (38),1096–1103.
  • Shabalovskaya S, Anderegg J, Van Humbeeck J. 2008. Critical overview of nitinol surfaces and their modifications for medical applications. Acta Biomater (4),447-467.
  • Acar E, Oktay T.2018. Havacılık ve uzay uygulamalarında şekil hafızalı alaşımlar, Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, (7 /1), 335-349.[17] Robertson S, Pelton A, Ritchie R. 2012. Mechanical fatigue and fracture of nitinol. Int Mater Rev (57/1),1-37.
  • Hornbogen E. 2004. Review thermo-mechanical fatigue of shape memory alloys. J Mater Sci (39/2), 385-399.
  • Pelton A. 2011. Nitinol fatigue: a review of microstructures and mechanisms. J Mater Eng Perform (20/(4-5),613-617.
  • Petrini L, Dordoni E, Wu W, Guala C, Silvestro C, Migliavacca F, et al. 2013. Fatigue resistance of nitinol peripheral stents. In: 6th ECCOMAS conference on smart structures and materials (SMART2013), Politecnico di Torino, 24-26.
  • Thompson SA. 1999. An overview of nickeletitanium alloys used in dentistry. Int Endod J 33, 297-310.
  • Method and system for orthodontic moving of teeth. 1973. Patent US 4037324.
  • Petrini L, Francesco M, 2011. Biomedical applications of shape memory alloys, Journal of Metallurgy, 501483.
  • Kujala S, Ryh¨anen J, J¨ams¨a T et al.. 2002. Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail. Biomaterials, (23/12) ,2535–2543.
  • Torrisi L and Di Marco G. 2000. Physical characterization of endodontic instruments in NiTi alloy, in Proceedings of the International Symposium on Shape Memory Materials, Materials Science Forum, (327),75–78.
  • Auricchio F, Boatti E, Conti M. 2015. SMA biomedical applications, Shape Memory Alloy Engineering , Butterworth-Heinemann.
  • Montenegro-Santillan R, Alegre-Domingo T, Faus-Matoses V, Faus-Llacer V.2013. An in vitro comparison of cyclic fatigue resistance of ProTaper universal and GT series X files. Med Oral Patol Oral Cir Bucal (18/3),e533536.
  • Pelton, Stockel, Duerig TW. 2000. Medical uses of nitinol. Mater Sci Forum (327-328),63-70.
  • VVAA. 1990. In: Duerig TW, editor. Engineering aspects of shape memory alloys. Butterworth-Heinemann Limited.
  • Tarnita D, Tarnita D, Bolcu D. 2011. In: Fazel-Rezai R, editor. Biomedical engineering e from theory to applications.
  • Dai KR, Hou XK, Sun YH, Tang RG, Qiu SJ, Ni C. 1993. Treatment of intra-articular fractures with shape memory compression staples. Injury (24/10),651-655.
  • Lekston Z, Stroz D, Drusik-Pawlowska M.2012. Preparation and characterization of nitinol bone staples for cranio-maxillofacial surgery. J Mater Eng Perform 21,2650-2656.
  • Shape memory alloy staple. 1999. Patent EP 1173102 B1.
  • Youyi C. 2001. Orthopedic application of NiTi shape memory alloys in China. In: SMST-2000: proceedings of the international conference on shape memory and superelastic technologies.
  • Intramedullary nail to be inserted into a fractured long bone. 2008. Patent EP 2133034 A1.
  • Kujala S, Ryhanen J, Jamsa T, Danilov A, Saaranen J, Pramila A, et al. 2002. Bone modeling controlled by a nickel-titanium shape memory alloy intramedullary nail. Biomaterials (23/12),25352543.
  • MedShape www.medshape.com. (Consultation: February 2013).
  • Kim D, Eun J, Park J. 2012. Posterior cervical fixation with a nitinol shape memory loop for primary surgical stabilization of atlantoaxial instability: a preliminary report. J Korean Neurosurg Soc (52),21-26.
  • Sanchez Marquez J, Sanchez Perez-Grueso F, Fernandez-Baíllo N, Gil Garay E. 2012. Gradual scoliosis correction over time with shape-memory metal: a preliminary report of an experimental study. Scoliosis ,(7/1).
  • Kuong E, Cheung K, Samartzis D, Yeung K, Luk K. 2012. Superelastic rods: the future of scoliosis curve correction. J Bone Joint Surg Br (94)102.
  • Wang Y, Zheng G, Zhang X, Zhang Y, Xiao S, Wang Z. 2011. Temporary use of shape memory spinal rod in the treatment of scoliosis. Eur Spine J ,(20),118-122.
  • Kianzad S, Amini A, Karkouti S. 2011. Force control of laparoscopy grasper using antagonistic shape memory alloy. In: 2011 1st Middle East conference on biomedical engineering, MECBME 2011, Sharjah; pp. 335-338.
  • Cuschieri A. 1991. Variable curvature shape-memory spatula for laparoscopic surgery. Surg Endosc(;5), 179-181.
  • 2018. (https://www.cookmedical.com/urology/our-history-nitinol-stone-extractors/) [45] Costamagna G, Tringali A, Spicak J, Mutignani M, Shaw J, Roy A, et al. 2012. Treatment of malignant gastroduodenal obstruction with a nitinol self-expanding metal stent: an international prospective multicentre registry. Dig Liver Dis (44),37-43.
  • Rossi P, Bezzi M, Rossi M, Adam A, Chetty N, Roddie M, et al. 1994. Metallic stents in malignant biliary obstruction: results of a multicenter European study of 240 patients. J Vasc Interv Radiol (5),279-285.
  • Talreja J, Eloubeidi M, Sauer B, Al-Awabdy B, Lopes T, Kahaleh M, et al. 2012. Fully covered removable nitinol self-expandable metal stents (SEMS) in malignant strictures of the esophagus: a multicenter analysis. Surg Endosc (269,1664-1669.
  • Kujawski K, Stasiak M, Rysz J. 2012. The evaluation of esophageal stenting complications in palliative treatment of dysphagia related to esophageal cancer. Med Sci Monit (18), 323-329.
  • 2018. (http://centralgaheart.com/need-know-heart-stent/)[50] Allium Medical Solutions Ltd. www.allium-medical.com. (Consultation: May 2013).
  • Matsuzaki A, Morita T, Tokue A, Kobayashi Y. 2004. Clinical study of intraurethral stent (MEMOKATH") for prostatic hyperplasia e study of the changes in uroflowmetry and international prostate symptom score in the early phase after insertion of the stent. Nishinihon J Urol (66), 637-643.
  • Muller B, Deyhle H, Mushkolaj S, Wieland M. 2009. The challenges in artificial muscle research to treat incontinence. Swiss Med Wkly (139),591-595.
  • Yakachi CM, Griffis J, Paıkalova M, Gall K. 2008. Bearing area: A new indication for suture anchor pullout strength?. Journal of Ortopaedic Research. (27/8), 1048-1054.
  • Elahinia ME, Hashemi M, tabesh M. 2012. Manufacturing and processing of NiTi implants: A review , progress in Materials Science, (57), 911-946.[55] Chahine G, Koike M, Okabe T, Smith P, Kovacevic R. 2008. The design and production of Ti–6A1–4V ELI customized dental implants. JOM (60),50–55.
  • Upadhyaya GS. 2002. Powder metallurgy technology. Cambridge International Science Publishing; 68–117 [chapters 6 and 7].
  • Harrysson O, Cansizoglu O, Marcellin-Little D, Cormier D, West H. 2008. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C (28),366–373.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Emre Acar 0000-0003-1114-6251

Publication Date December 31, 2018
Published in Issue Year 2018 Issue: 14

Cite

APA Acar, E. (2018). Şekil hafızalı alaşımların biyomedikal uygulamaları. Avrupa Bilim Ve Teknoloji Dergisi(14), 134-144. https://doi.org/10.31590/ejosat.429048