Research Article
BibTex RIS Cite

İç ve Dış Rotorlu Akı Anahtarlamalı Sürekli Mıknatıslı Makinelerin Elektromanyetik Karakteristiklerine Göre Karşılaştırılması

Year 2020, Ejosat Special Issue 2020 (ARACONF), 21 - 26, 01.04.2020
https://doi.org/10.31590/ejosat.araconf4

Abstract

Güncel teknoloji gelişmeleri elektrik makinaları alanındaki çalışmalara da yön vermektedir. O nedenle araştırmacılar geleneksel makinaların performans iyileştirmelerinin yanında yeni makina türleri üzerinde de çalışmaktadır. Akı anahtarlamalı sürekli mıknatıslı makineler de literatürde geliştirilen en yeni elektrik makine türlerinden birisidir. Çalışma prensibi ve makine tasarımı relüktans makinelere benzemektedir. Rotor tarafı relüktans makinelerle aynı yapıdadır. Ancak akı anahtarlamalı sürekli mıknatıslı makinelerde stator tarafında sargılar içinde, iki stator oluğu arasında gömülü mıknatıslar bulunmaktadır. Her ne kadar üretim aşamasında bazı zorlukları olsa da bu tasarımın getirmiş olduğu çeşitli avantajlar bulunmaktadır. Statordaki sürekli mıknatıs kutupları manyetik akının stator nüvesinden aktığı yolu destekleyici şekilde yönlendirilmiştir. Bu sayede zıt elektromotor kuvveti dalga şekli sinüs olarak meydana gelmektedir. Bu özellik de akı anahtarlamalı sürekli mıknatıslı makinaları bir adım öne çıkarmaktadır. Rotorda mıknatıs bulunmadığı için diğer (yüzey) mıknatıslı makinelere göre daha sağlam bir yapıdadır. Yüksek hız uygulamaları için uygundur. Bu makalede de akı anahtarlamalı sürekli mıknatıslı dört makine tasarımı elektromanyetik özellikleri bakımından karşılaştırılmaktadır. Sürekli mıknatıs hacimleri eşit alınan aynı oluk ve kutup sayısına sahip, iç rotorlu ve dış rotorlu dört makinenin statik elektromanyetik analizi yapılarak manyetik akı yoğunluğu karakteristikleri üç boyutlu sonlu elemanlar yöntemiyle değerlendirilmiştir. Karşılaştırmalar yapılırken özellikle makine boyutlarının da eşit olmasına dikkat edilmiştir. Tasarlanan dört tasarımdan ikisi karşılaştırma amacıyla gerçekleştirilirken, ikisi de incelenmek üzere geliştirilmiştir. Önerilen akı anahtarlamalı sürekli mıknatıslı makinalarda rotor tarafındaki dişlerin içerisine akı bariyeri denilen hava kanalları açılmıştır. Yapılan çalışmada bu hava kanallarının davranışı üç boyutlu sonlu elemanlar analizi verileri kullanılarak incelenmiştir. Sonuçta içerisinde hava kanalı bulunan tasarımların avatajları ve dezavantajları makine performansı açısından değerlendirilmiştir.

References

  • Hao Chen, Ayman M. EL-Refaie, Nabeel A. O. Demerdash and Christopher H. T. Lee (2019). Flux-Switching Permanent Magnet Machines: A Review of Opportunities and Challenges-Part II: Design Aspects, Control, and Emerging Trends, , IEEE Transactions on Energy Conversion, DOI:10.1109/TEC.2019.2956565
  • Hao Chen, Ayman M. EL-Refaie, Nabeel A. O. Demerdash and Christopher H. T. Lee (2019). “Flux-Switching Permanent Magnet Machines: A Review of Opportunities and Challenges - Part I: Fundamentals and Topologies” , IEEE Transactions on Energy Conversion, DOI: 10.1109/TEC.2019.2956600
  • Wei Hua, Ming Cheng, Z. Q. Zhu, D. Howe.(2006) Design of Flux-Switching Permanent Magnet Machine Considering the Limitation of Inverter and Flux-Weakening Capability. Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA
  • C. Hwang, C. Chang, S. ShanHung and C. Liu (2014). Design of High Performance Flux Switching PM Machines with Concentrated Windings. IEEE Transactions On Magnetics, 50(1).
  • P. Su, W. Hua, Z. Wu, Z. Chen, G. Zhang and M. Cheng (2019). Comprehensive Comparison of Rotor Permanent Magnet and Stator Permanent Magnet Flux-Switching Machines. IEEE Transactions On Industrial Electronics, 66(8).
  • H. Zhang, W. Hua, M. Hu, D. Gerada, and C. Gerada (2019). The Influence of Winding Location in Flux-Switching Permanent-Magnet Machines. IEEE Transactions On Magnetics, 55(7)
  • H. Chen, X. Liu, A. M. EL-Refaie, J. Zhao, N. A. O. Demerdash, and J. He (2019). Comparative Study of Winding Configurations of a Five-Phase Flux-Switching PM Machine. IEEE Transactions On Energy Conversion, 34(4).
  • P. Su, W. Hua, M. Hu, Z. Wu, J. Si, Z. Chen and M. Cheng (2020). Analysis of Stator Slots and Rotor Pole Pairs Combinations of Rotor-Permanent Magnet Flux-Switching Machines. IEEE Transactions On Industrial Electronics, 67(2)
  • W. Fei, P. C. K. Luk, J. X. Shen, Y. Wang, and M. J. Jin (2012). Novel Permanent-Magnet Flux Switching Machine With an Outer-Rotor Configuration for In-Wheel Light Traction Applications. IEEE Transactions On Industry Applications.
  • N. Ahmad, F. Khan, N. Ullah, and M. Z. Ahmad. (2018) Performance Analysis of Outer Rotor Wound Field Flux Switching Machine for Direct Drive Application” ACES JOURNAL, 33(8).
  • Y. Yao, C. Liu and C. H. T. Lee. (2018). Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles. Energies, 11(1), 2141.
  • E. Mbadiwe, E. Sulaiman. (2017). Flux Switching Permanent Magnet Motor using Segmented Outer Rotor Structure for Electric Scooter. Indonesian Journal of Electrical Engineering and Computer Science, 6(2), 379-386.
  • W. Hua, H. Zhang, M. Cheng, J. Meng, and C. Hou (2017). An Outer-Rotor Flux-Switching Permanent-Magnet-Machine With Wedge-Shaped Magnets for In-Wheel Light Traction. IEEE Transactions On Industrial Electronics, 64(1).
  • X. Zhu, Z. Shu, L. Quan, Z. Xiang, and X. Pan (2017). Design and Multicondition Comparison of Two Outer-Rotor Flux-Switching Permanent-Magnet Motors for In-Wheel Traction Applications. IEEE Transactions On Industrial Electronics, 64(8).
  • L. Mo, T. Zhang, and Q. Lu (2019). Design and Analysis of an Outer-Rotor-Permanent-Magnet Flux-Switching Machine for Electric Vehicle Applications. IEEE Transactions On Applied Superconductivity, 29(2).
  • J. T. Shi, A. M. Wang, and Z. Q. Zhu, (2017). Influence of PM- and armature winding-stator positions on electromagnetic performance of novel partitioned stator permanent magnet machines. IEEE Trans. Magn., 53(1).
  • L. Wu, R. Qu, and D. Li, (2014). Reduction of rotor eddy-current losses for surface PM machines with fractional slot concentrated windings and retaining sleeve. IEEE Trans. Magn., 50(11), 1–4.
  • L. Alberti and N. Bianchi, (2013). Theory and design of fractional-slot multilayers windings. IEEE Trans. Ind. Appl., 49(2), 841–849.
  • G. Dajaku, W. Xie, and D. Gerling, (2014). Reduction of low space harmonics for the fractional slot concentrated windings using a novel stator design. IEEE Trans. Magn., 50(5), 1–12.
  • J. Luo, W. Zhao, J. Ji, J. Zheng, Y. Zhang, Z. Ling, and J. Mao (2017). Reduction of Eddy-Current Loss in Flux-Switching Permanent-Magnet Machines Using Rotor Magnetic Flux Barriers. IEEE Transactions On Magnetics, 53(11)

Comparison of the inner and outer rotor flux switching permanent magnet machines in contrast to electromagnetic characteristics

Year 2020, Ejosat Special Issue 2020 (ARACONF), 21 - 26, 01.04.2020
https://doi.org/10.31590/ejosat.araconf4

Abstract

Current technology developments also guide the works in the field of electrical machines. That's why researchers are working on new machine types as well as performance improvements of traditional machines. Flux-switching permanent magnet machines are also one of the novel electrical machine types developed in the literature. The working principle and machine design are similar to reluctance machines. The rotor side has the same structure as reluctance machines. However, in flux-switching permanent magnet machines, there are magnets embedded in the windings on the stator side between the two stator slots. Although there are some difficulties in the production process, there are several advantages brought by this design. The permanent magnet poles in the stator are guided to support the path through which the magnetic flux flows through the stator core. In this way, the opposite electromotive force waveform occurs as a sinusoidal. This feature put the flux-switching permanent magnet machines one step forward. Since there is no magnet in the rotor, it is more robust than other (surface) permanent magnet machines. It is convenient for high speed applications. In this article, four flux-switching permanent magnet machine designs are compared in terms of their electromagnetic properties. The magnetic flux density characteristics were evaluated by three-dimensional finite elements method by performing static electromagnetic analysis of four machines with inner rotor and outer rotor with the same number of slots and poles, whose permanent magnet volumes were taken equally. While making comparisons, it was especially paid attention to be equal to the machine dimensions. While two of the four designs designed were realized for comparison purposes, others were developed for investgation. In proposed flux-switching permanent magnet machines, air ducts called flux barriers are opened into the teeth on the rotor side. In this study, the behavior of these air ducts was analyzed using three dimensional finite element analysis data. As a result, the advantages and disadvantages of designs with air ducts were evaluated in terms of machine performance.

References

  • Hao Chen, Ayman M. EL-Refaie, Nabeel A. O. Demerdash and Christopher H. T. Lee (2019). Flux-Switching Permanent Magnet Machines: A Review of Opportunities and Challenges-Part II: Design Aspects, Control, and Emerging Trends, , IEEE Transactions on Energy Conversion, DOI:10.1109/TEC.2019.2956565
  • Hao Chen, Ayman M. EL-Refaie, Nabeel A. O. Demerdash and Christopher H. T. Lee (2019). “Flux-Switching Permanent Magnet Machines: A Review of Opportunities and Challenges - Part I: Fundamentals and Topologies” , IEEE Transactions on Energy Conversion, DOI: 10.1109/TEC.2019.2956600
  • Wei Hua, Ming Cheng, Z. Q. Zhu, D. Howe.(2006) Design of Flux-Switching Permanent Magnet Machine Considering the Limitation of Inverter and Flux-Weakening Capability. Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, Tampa, FL, USA
  • C. Hwang, C. Chang, S. ShanHung and C. Liu (2014). Design of High Performance Flux Switching PM Machines with Concentrated Windings. IEEE Transactions On Magnetics, 50(1).
  • P. Su, W. Hua, Z. Wu, Z. Chen, G. Zhang and M. Cheng (2019). Comprehensive Comparison of Rotor Permanent Magnet and Stator Permanent Magnet Flux-Switching Machines. IEEE Transactions On Industrial Electronics, 66(8).
  • H. Zhang, W. Hua, M. Hu, D. Gerada, and C. Gerada (2019). The Influence of Winding Location in Flux-Switching Permanent-Magnet Machines. IEEE Transactions On Magnetics, 55(7)
  • H. Chen, X. Liu, A. M. EL-Refaie, J. Zhao, N. A. O. Demerdash, and J. He (2019). Comparative Study of Winding Configurations of a Five-Phase Flux-Switching PM Machine. IEEE Transactions On Energy Conversion, 34(4).
  • P. Su, W. Hua, M. Hu, Z. Wu, J. Si, Z. Chen and M. Cheng (2020). Analysis of Stator Slots and Rotor Pole Pairs Combinations of Rotor-Permanent Magnet Flux-Switching Machines. IEEE Transactions On Industrial Electronics, 67(2)
  • W. Fei, P. C. K. Luk, J. X. Shen, Y. Wang, and M. J. Jin (2012). Novel Permanent-Magnet Flux Switching Machine With an Outer-Rotor Configuration for In-Wheel Light Traction Applications. IEEE Transactions On Industry Applications.
  • N. Ahmad, F. Khan, N. Ullah, and M. Z. Ahmad. (2018) Performance Analysis of Outer Rotor Wound Field Flux Switching Machine for Direct Drive Application” ACES JOURNAL, 33(8).
  • Y. Yao, C. Liu and C. H. T. Lee. (2018). Quantitative Comparisons of Six-Phase Outer-Rotor Permanent-Magnet Brushless Machines for Electric Vehicles. Energies, 11(1), 2141.
  • E. Mbadiwe, E. Sulaiman. (2017). Flux Switching Permanent Magnet Motor using Segmented Outer Rotor Structure for Electric Scooter. Indonesian Journal of Electrical Engineering and Computer Science, 6(2), 379-386.
  • W. Hua, H. Zhang, M. Cheng, J. Meng, and C. Hou (2017). An Outer-Rotor Flux-Switching Permanent-Magnet-Machine With Wedge-Shaped Magnets for In-Wheel Light Traction. IEEE Transactions On Industrial Electronics, 64(1).
  • X. Zhu, Z. Shu, L. Quan, Z. Xiang, and X. Pan (2017). Design and Multicondition Comparison of Two Outer-Rotor Flux-Switching Permanent-Magnet Motors for In-Wheel Traction Applications. IEEE Transactions On Industrial Electronics, 64(8).
  • L. Mo, T. Zhang, and Q. Lu (2019). Design and Analysis of an Outer-Rotor-Permanent-Magnet Flux-Switching Machine for Electric Vehicle Applications. IEEE Transactions On Applied Superconductivity, 29(2).
  • J. T. Shi, A. M. Wang, and Z. Q. Zhu, (2017). Influence of PM- and armature winding-stator positions on electromagnetic performance of novel partitioned stator permanent magnet machines. IEEE Trans. Magn., 53(1).
  • L. Wu, R. Qu, and D. Li, (2014). Reduction of rotor eddy-current losses for surface PM machines with fractional slot concentrated windings and retaining sleeve. IEEE Trans. Magn., 50(11), 1–4.
  • L. Alberti and N. Bianchi, (2013). Theory and design of fractional-slot multilayers windings. IEEE Trans. Ind. Appl., 49(2), 841–849.
  • G. Dajaku, W. Xie, and D. Gerling, (2014). Reduction of low space harmonics for the fractional slot concentrated windings using a novel stator design. IEEE Trans. Magn., 50(5), 1–12.
  • J. Luo, W. Zhao, J. Ji, J. Zheng, Y. Zhang, Z. Ling, and J. Mao (2017). Reduction of Eddy-Current Loss in Flux-Switching Permanent-Magnet Machines Using Rotor Magnetic Flux Barriers. IEEE Transactions On Magnetics, 53(11)
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Emrah Çetin 0000-0002-7023-6604

Publication Date April 1, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (ARACONF)

Cite

APA Çetin, E. (2020). Comparison of the inner and outer rotor flux switching permanent magnet machines in contrast to electromagnetic characteristics. Avrupa Bilim Ve Teknoloji Dergisi21-26. https://doi.org/10.31590/ejosat.araconf4