Research Article
BibTex RIS Cite

İki Linkli Manipülatör için Genetik Algoritma ile Yapay Sinir Ağı Tabanlı Kayan Kipli Kontrolcü

Year 2020, Ejosat Special Issue 2020 (ARACONF), 120 - 129, 01.04.2020
https://doi.org/10.31590/ejosat.araconf16

Abstract

Bu makalede, iki eklemli robot manipülatörün yörünge kontrolü için yeni bir kontrol yöntemi önerilmektedir. Manipülatör modeli, robot manipülatör için kullanılan malzemelerin esnekliği nedeniyle bazı bilinmeyen parametrelere sahiptir. Ayrıca robot manipülatörler genellikle dış gürültülerden etkilenir. Bu bilinmeyen parametreleri modellemek için radyal bazlı fonksiyon tabanlı yapay sinir ağları kullanılır. Robot manipülatörün yörünge takibi için kontrolcü yapısı, gürbüz ve adaptif kayan kipli kontrolcüye (SMC) dayanmaktadır. SMC'nin katsayıları evrimsel algoritma, yani genetik algoritma yardımıyla hesaplanır. Önerilen algoritma, izleme hatasının belli bir sürede sıfıra yakınlaşmasını garanti eder. Kapalı döngü sisteminin kararlılığı Lyapunov Teorisi ile sağlanmaktadır. Matlab / Simulink ortamında önerilen denetleyicinin geçerliliğini göstermek için sayısal simülasyonlar yapılmıştır. Ayrıca, önerilen kontrol yönteminin etkinliği ve geçerliliği karşılaştırmalı simülasyon sonuçları ile teyit edilmiştir. Yapılan deneyler, önerilen denetleyici yapısının literatürdeki diğer yaklaşımlarla karşılaştırdığımızda gürültülere dayanıklı, tırlama etkisinden uzak, sağlam ve hızlı özelliklere sahip olduğunu göstermektedir.

References

  • Amer, A. F., Sallam, E. A., & Elawady, W. M. (2011). Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators. Applied Soft Computing, 11(8), 4943-4953.
  • Choi, Y., & Chung, W. K. (2004). PID trajectory tracking control for mechanical systems (Vol. 298). Springer Science & Business Media. Lewis, Frank L., Darren M. Dawson ve Chaouki T. Abdallah, Robot manipulator control: theory and practice, CRC Press, 2003.
  • He, J., Luo, M., Zhang, Q., Zhao, J., & Xu, L. (2016). Adaptive fuzzy sliding mode controller with nonlinear observer for redundant manipulators handling varying external force. Journal of Bionic Engineering, 13(4), 600-611.
  • Kumar, V., Nakra, B. C., & Mittal, A. P. (2011). A review on classical and fuzzy PID controllers. International Journal of Intelligent Control and Systems, 16(3), 170-181.
  • Lewis, F. L., Dawson, D. M., & Abdallah, C. T. (2003). Robot manipulator control: theory and practice. CRC Press.
  • Loucif, F., Kechida, S., & Sebbagh, A. (2020). Whale optimizer algorithm to tune PID controller for the trajectory tracking control of robot manipulator. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(1), 1.
  • Nguyen, K., Nguyen, T., Bui, Q., & Pham, M. (2018). Adaptive antisingularity terminal sliding mode control for a robotic arm with model uncertainties and external disturbances. Turkish Journal of Electrical Engineering & Computer Sciences, 26(6), 3224-3238.
  • Sun, T., Pei, H., Pan, Y., Zhou, H., & Zhang, C. (2011). Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing, 74(14-15), 2377-2384.
  • Tilki, U., & Olgun, M. Robot Manipülatör Kontrolünde Doğrusal ve Doğrusal Olmayan Denetleyici Yapılarının Karşılaştırılması. 21. Otomatik Kontrol Ulusal Toplantısı TOK 2019.
  • Tran, M. D., & Kang, H. J. (2017). Adaptive terminal sliding mode control of uncertain robotic manipulators based on local approximation of a dynamic system. Neurocomputing, 228, 231-240.
  • Vijay, M., & Jena, D. (2018). Backstepping terminal sliding mode control of robot manipulator using radial basis functional neural networks. Computers & Electrical Engineering, 67, 690-707.

Neural Network Based Sliding Mode Controller with Genetic Algorithm for Two Link Robot Manipulator

Year 2020, Ejosat Special Issue 2020 (ARACONF), 120 - 129, 01.04.2020
https://doi.org/10.31590/ejosat.araconf16

Abstract

In this paper, a novel control method is proposed in order to control the trajectory of two link robotic manipulator. The model of the manipulator has some unknown parameters because of the elasticity of the used materials for robot manipulator. Besides the robotic manipulators are generally open for the external disturbances. Radial basis function neural networks are employed in order to model these unknown parameters. The controller structure for trajectory tracking for the robot manipulator is based on robust and adaptive Sliding Mode Control (SMC). The coefficients of the SMC is calculated by the help of evolutionary algorithm, namely genetic algorithm. The proposed algorithm guarantees that the tracking error converges to zero in a finite time. The stability of the closed loop system is ensured by Lyapunov Theory. Numerical simulations have been conducted in Matlab/Simulink environment to demonstrate the validity of the proposed controller. Moreover, effectiveness and validity of the proposed control method is confirmed by comparative simulation results. The conducted experiments are demonstrated that proposed controller has disturbance rejection, chattering free, robust and fast property when we compared with other approaches in the literature.

References

  • Amer, A. F., Sallam, E. A., & Elawady, W. M. (2011). Adaptive fuzzy sliding mode control using supervisory fuzzy control for 3 DOF planar robot manipulators. Applied Soft Computing, 11(8), 4943-4953.
  • Choi, Y., & Chung, W. K. (2004). PID trajectory tracking control for mechanical systems (Vol. 298). Springer Science & Business Media. Lewis, Frank L., Darren M. Dawson ve Chaouki T. Abdallah, Robot manipulator control: theory and practice, CRC Press, 2003.
  • He, J., Luo, M., Zhang, Q., Zhao, J., & Xu, L. (2016). Adaptive fuzzy sliding mode controller with nonlinear observer for redundant manipulators handling varying external force. Journal of Bionic Engineering, 13(4), 600-611.
  • Kumar, V., Nakra, B. C., & Mittal, A. P. (2011). A review on classical and fuzzy PID controllers. International Journal of Intelligent Control and Systems, 16(3), 170-181.
  • Lewis, F. L., Dawson, D. M., & Abdallah, C. T. (2003). Robot manipulator control: theory and practice. CRC Press.
  • Loucif, F., Kechida, S., & Sebbagh, A. (2020). Whale optimizer algorithm to tune PID controller for the trajectory tracking control of robot manipulator. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(1), 1.
  • Nguyen, K., Nguyen, T., Bui, Q., & Pham, M. (2018). Adaptive antisingularity terminal sliding mode control for a robotic arm with model uncertainties and external disturbances. Turkish Journal of Electrical Engineering & Computer Sciences, 26(6), 3224-3238.
  • Sun, T., Pei, H., Pan, Y., Zhou, H., & Zhang, C. (2011). Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing, 74(14-15), 2377-2384.
  • Tilki, U., & Olgun, M. Robot Manipülatör Kontrolünde Doğrusal ve Doğrusal Olmayan Denetleyici Yapılarının Karşılaştırılması. 21. Otomatik Kontrol Ulusal Toplantısı TOK 2019.
  • Tran, M. D., & Kang, H. J. (2017). Adaptive terminal sliding mode control of uncertain robotic manipulators based on local approximation of a dynamic system. Neurocomputing, 228, 231-240.
  • Vijay, M., & Jena, D. (2018). Backstepping terminal sliding mode control of robot manipulator using radial basis functional neural networks. Computers & Electrical Engineering, 67, 690-707.
There are 11 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Melikcan Ölgün This is me 0000-0002-2892-9319

Umut Tilki 0000-0002-8988-787X

Publication Date April 1, 2020
Published in Issue Year 2020 Ejosat Special Issue 2020 (ARACONF)

Cite

APA Ölgün, M., & Tilki, U. (2020). Neural Network Based Sliding Mode Controller with Genetic Algorithm for Two Link Robot Manipulator. Avrupa Bilim Ve Teknoloji Dergisi120-129. https://doi.org/10.31590/ejosat.araconf16