Year 2020, Volume , Issue 19, Pages 156 - 164 2020-08-31

Rhodosporidium toruloides Y27012 mayasından lipit ve karotenoidlerin biyoteknolojik yolla üretimi
Biotechnological production of lipids and carotenoids from Rhodosporidium toruloides Y27012

Fuat ALAKRAA [1] , Ayşe SAYGÜN [2] , Neşe ŞAHİN YEŞİLÇUBUK [3]


Mikrobiyal yağlar, çeşitli mikroorganizmalar tarafından üretilen lipitlerdir. Biyokütlelerinin % 20’sinden daha fazla lipit üretebilme kapasitesine sahip mikroorganizmalara “oleosus mikroorganizmalar” adı verilmektedir. Bakteri, maya, küf ve algleri içerebilen bu oleosus mikroorganizmalar, sekonder metabolik büyüme sırasında Tek Hücre Yağı (THY) depolayabilmektedir. Rhodosporidium toruloides Y27012, farklı karbon ve azot kaynaklarını kullanarak hem lipitleri hem de karotenoidleri üretebilen kırmızı renge sahip oleosus bir mayadır. Bu çalışmanın amacı, farklı azot ve karbon kaynakları, farklı Karbon / Azot (K / A) oranları ve bazı katkı maddelerinin R. toruloides Y27012 mayasının gelişimi, lipit ve karotenoid üretimi üzerindeki etkilerini araştırmaktır. Maksimum biyokütle, lipit ve karotenoid verimi, azot ve karbon kaynakları olarak sırasıyla maya ekstraktı ve glukoz kullanıldığında elde edilmiştir. En yüksek biyokütle ve lipit değerleri (53.41 ± 0.93 g / L, % 49.83 ± 2.53) K / A oranı 60 olduğunda, maksimum karotenoid miktarı (1001.51 ± 17.87 ug / g) ise yüksek azot oranında (K / A= 20) elde edilmiştir. Test edilen katkı maddeleri arasında, 10 g / L'deki etanol, kontrol numunesi 1001.51 ± 17.87 ug / g olan karotenoid verimini, 1732.17 ± 39.45 ug / g değerine kadar artırmıştır. Aktivatör olarak 5 g / L'deki asetik asit eklendiğinde biyokütle ve lipit içeriğinin (sırasıyla 41.97 ± 1.02 g / L, % 61.27 ± 1.77 g / L) daha yüksek olduğu bulunmuştur. Ayrıca, R. toruloides Y27012 mayasından lipit ve karotenoid üretimi için optimizasyon çalışmaları gerçekleştirilebilir ve alternatif ucuz karbon ve azot kaynakları olarak tarımsal ve / veya endüstriyel atıklar kullanılarak katma değeri yüksek metabolit üretimi için fermantasyon maliyeti de azaltılabilir.

Microbial oils are lipids formed by various microorganisms. Microorganisms that are able to accumulate lipids more than 20% of their biomass are named as “oleaginous microorganisms”. These oleaginous microorganisms such as bacteria, yeasts, moulds, and algae are able to accumulate SCO (Single Cell Oil) during secondary metabolic growth. Rhodosporidium toruloides Y27012 is an oleaginous red yeast, which accumulates both lipids and carotenoids by using different carbon and nitrogen sources. The aim of this present study was to investigate the effects of different nitrogen, carbon sources, C/N (carbon to nitrogen) ratios, and some additives on cell growth, lipid accumulation and carotenoids production by R. toruloides Y27012. The maximum biomass, lipid accumulation and carotenoids yield were observed with yeast extract and glucose when used as nitrogen and carbon sources, respectively. R. toruloides Y27012 gave the highest values of both biomass and lipid content (53.41±0.93 g/L, 49.83±2.53 %) at C/N ratio of 60, whereas higher nitrogen levels such as C/N ratio of 20 enhanced the production of carotenoids (1001.51±17.87 µg/g). Among the tested additives, ethanol at 10 g/L increased the carotenoids yield up to 1732.17±39.45 µg/g comparing with the control sample at 1001.51±17.87 µg/g. Biomass and lipid contents were found to be higher when acetic acid at 5 g/L was added as an activator (41.97±1.02 g/L, 61.27%±1.77 g/L, respectively). Furthermore, optimization studies for lipid and carotenoids production from R. toruloides Y27012 could be achieved and also cost of fermentation could be reduced by using agro-industrial wastes as an alternative cheap carbon and nitrogen sources to produce value-added metabolites. 

  • RATLEDGE., C. (2002). Regulation of lipid accumulation in oleaginous microorganisms. Biochem. Soc. Trans, 30: 1047.
  • LI, Y.H., ZHAO, Z.B., BAI. F.W. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb. Tech, 41: 312. https://doi.org/10.1016/j.enzmictec.2007.02.008.
  • BUZZINI, P., INNOCENTI, M., TURCHETTI, B., LIBKIND, D., VAN BROOCK, M., MULINACCI, N. (2007). Carotenoids profiles of yeasts belonging to the genera Rhodotorula, Rhodosporidium, Sporobolomyces and Sporidiobolus. Can. J. Microbiol, 53: 1024. https://doi.org/10.1139/W07-068.
  • POLITINO, M., TONZI, S.M., BURNETT, W.V., ROMANCIK G., USHER. J.J. (1997). Purification and characterization of cephalosporin esterase from Rhodosporidium toruloides. Appl. Environ. Microbial, 63(12): 4807.
  • WANG, Q., GUO, F., RONG, Y., MING-CHI, Z. (2012). Lipid production from hydrolysate of cassava starch by Rhodosporidium toruloides. Renew. Energy, 46: 164-168. https://doi.org/10.1016/j.renene.2012.03.002.
  • LIU, B. & ZHAO, Z.K. (2007). Biodiesel production by direct methanolysis of oleaginous microbial biomass. J. Chem. Technol. Biotechnol, 82: 775. https://doi.org/10.1002/jctb.1744.
  • ZHAO, X., HU, C., WU, S., SHEN, H., ZHAO, Z.K. (2011). Lipid production by Rhodosporidiumtoruloides Y4 using different substrate feeding strategies. J. Ind. Micriobiol. Biotech, 38(5): 627. https://doi.org/10.1007/s10295-010-0808-4.
  • PAPANIKOLAOU, S. & AGGELIS, G. (2011). Lipids of oleaginous yeasts. Part I: Biochemistry of single cell oil production. Eur. J. Lipid Sci. Tech, 113: 1031. https://doi.org/10.1002/ejlt.201100014.
  • ECONOMOU, C.N., VASILIADOU, I.A., AGGELIS, G., PAVLOU, S., VAYENAS, D.V. (2011). Modeling of oleaginous fungal biofilm developed on semi-solid media. Bioresour. Technol, 102: 9697-9704. https://doi.org/10.1016/j.biortech.2011.08.003.
  • BERTACCHI, S., PORRO, D., BETTIGA, M., BRANDUARDI, P. 2020. Camelina sativa meal hydrolysate as sustainable biomass for the production of carotenoids by Rhodosporidium toruloides. Biotechnology for Biofuels 13(1). https://doi.org/10.1186/s13068-020-01682-3.
  • WAITES, J., MORGAN, N.L., ROCKEY, J.S., HIGTON, G. (2001). Food additives and supplements. In: Industrial microbiology: An introduction. London: Blackwell Scientific, Oxford, UK, pp. 210-217.
  • GOODWIN, T. & BRITTON, G. (1988). Distribution and Analysis of Carotenoids. In: Plant Pigments. Academic Press, London, UK.
  • ARMSTRONG, G.A. (1994). Eubacteria show their true colors: genetics of carotenoid pigment biosynthesis from microbes to plants. J. Bacteriol, 176: 4795-4802.
  • FRENGOVA, G.I. & BESHKOVA, D.M. (2009). Carotenoids from Rhodotorulaand Phaffia: Yeasts of biotechnological importance. J. Ind. Microbiol. Biot, 36: 163. https://doi.org/10.1007/s10295-008-0492-9.
  • AKSU, Z. & EREN, A.T. (2005). Carotenoids production by the yeast Rhodotorulamucilaginosa, use of agricultural wastes as a carbon source. Process. Biochem, 40: 2985-2991. doi: 10.1016/j.procbio.2005.01.011.
  • FONTANA, J.D., GUIMARÃES, M.F., MARTINS, N.T., FONTANA, C.A., BARON, M. (1996). Culture of the astaxanthinogenic yeast Phaffia rhodozyma in low-cost media. Appl. Biochem. Biotechnol, 57-58: 413. https://doi.org/10.1007/BF02941721.
  • PHAM, K.D., SHIDA, Y., MIYATA, A., TAKAMIZAWA, T., SUZUKI, Y., ARA, S., YAMAZAKI, H., MASAKI, K., MORI, K., ABURATANI, S., HIRAKAWA, H., TASHIRO, K., KUHARA, S., TAKAKU, H., OGASAWARA, W. 2020. Effect of light on carotenoid and lipid production in the oleaginous yeast Rhodosporidium toruloides. Biosci Biotechnol Biochem. 19:1-12. https://doi.org/10.1080/09168451.2020.1740581.
  • MACHADO, W.R.M., SILVA, L.G., VANZELA, E.S.L., Del BIANCHI, V.L. 2019. Production of carotenoids by Rhodotorula toruloides isolated from Brazilian tropical savannah. International Food Research Journal 26(4): 1259-1267.
  • BELLOU, S., BAESHEN, M.N., ELAZZAZY, A.M., AGGELI, D., SAYEGH, F., AGGELIS, G. (2014). Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol. Adv, 32: 1476-1493. https://doi.org/10.1016/j.biotechadv.2014.10.003.
  • HU, C.M., ZHAO, X., ZHAO, J., WU, S.G., ZHAO, Z.K. (2009). Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour. Technol, 100: 4843-4847. https://doi.org/10.1016/j.biortech.2009.04.041.
  • LATHA, B.V., JEEVARATNAM, K., MURALI, H.S., MANJA, K.S. (2005). Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DER-PDY from natural source. Indian J. Biotechnol, 4: 353-357.
  • TAOKA, Y., NAGONO, N., OKITA, Y., IZUMIDA, H., SUGIMOTO, S., HAYASHI, M. (2011). Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytriumaureum ATCC34304. J. Biosci. Bioeng, 11(4): 420-424. https://doi.org/10.1016/j.jbiosc.2010.12.010.
  • FOLCH, J., LEES, M., STANLEY, G.H.S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem, 226(1): 497.
  • GU, Z., CHEN, D., HAN, Y., CHEN, Z., GU, F. (2008). Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT, 41(6): 1082-1088. https://doi.org/10.1016/j.lwt.2007.07.005.
  • DEMING, C., YONBIN, H., ZHENXIN, G. (2006). Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Process Biochem, 41: 1773-1778. https://doi.org/10.1016/j.procbio.2006.03.023.
  • WANG, S., SUN, J., HAN, Z., WU, X. (2008). Enhanced β-carotene production by Rhodotorula glutinis using high hydrostatic pressure. Korean J. Chem. Eng. 25(3), 513-516. https://doi.org/10.1007/s11814-008-0086-2.
  • MICHELON, M., MATOS DE BORBA, T., RUAN DE SILVA, R., VEIGA BURKERT, C.A., DE MEDEIROS BURKERT, J.F. (2012). Extraction of carotenoids from Phaffia rhodozyma: A comparison between different techniques of cell disruption. Food Sci. Biotech, 21: 1-8. https://doi.org/10.1007/s10068-012-0001-9.
  • SAENGE, C., CHEIRSILP, B., SUKSAROGE, T.T., BOURTOOM, T. (2011). Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotech. Bioprocess. Eng, 16: 23-33. https://doi.org/10.1007/s12257-010-0083-2.
  • BHOSALE, P. & GADRE. R.V. (2001). Production of β-carotene by a mutant of Rhodotorula glutinis. Appl. Microbiol. Biotechnol, 55: 423.
  • WIEBE, M.G., KOIVURANTA, K., PENTTILA, M., RUOHONEN, L. (2012). Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnol, 12: 26. https://doi.org/10.1186/1472-6750-12-26.
  • RATLEDGE. C. 1988. Biochemistry, Stoichiometry, Substrate and Economics. In: R. S. Moreton (Ed.) Single Cell Oil. Longman, London, UK, pp. 33-70.
  • PARK, P.K., CHO, D.H., KIM, E.Y., CHU, K.H. (2005). Optimization of carotenoid production by Rhodotorula glutinis using statistical experimental design. World J. Microbiol. Biotechnol, 21(4): 429-434. https://doi.org/10.1007/s11274-004-1891-3.
  • SOMASHEKAR, D. & JOSEPH. R. (2000). Inverse relationship between carotenoid and lipid formation in Rhodotorulagracili according to the C/N ratio of the growth medium. World J. Microbiol. Biotechnol, 16: 491-493. https://doi.org/10.1023/A:1008917612616.
  • LIBKIND, D. & VAN BROOCK, M. (2006). Biomass and carotenoid pigment production by Patagonian native yeasts. World J. Microbiol. Biotechnol, 22: 687-692. https://doi.org/10.1007/s11274-005-9091-3.
  • LIBKIND, D., BRIZZIO, S., VAN BROOCK, M. (2004). Rhodotorula mucilaginosa, a carotenoid producing yeast strain from a patagonian high-altitude lake. Folia Microbiol, 49(1): 19-25. https://doi.org/10.1007/bf02931640.
  • WU, S., HU, C., JIN, G., ZHAO, X., ZHAO, Z.K. (2010). Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresource Technol, 101: 6124-6129. https://doi.org/10.1016/j.biortech.2010.02.111.
  • KIM, S.W., KIM, J.B., JUNG, W.H., KIM, J.H., JUNG, J.K. (2006). Over-production of beta-carotene from metabolically engineered Escherichia coli. Biotechnol. Lett, 28: 897-904. https://doi.org/10.1007/s10529-006-9023-9.
  • AKSU, Z. & EREN, A.T. (2007). Production of carotenoids by the isolated yeast of Rhodotorula glutinis. Biochem. Eng. J, 35(2): 107-113. https://doi.org/10.1016/j.bej.2007.01.004.
  • KIM, S.J., KIM, G.J., PARK, D.H., RYU, Y.W. (2003). High-level production of astaxanthin by fed-batch culture of mutant strain Phaffia rhodozyma AJ-6-1. J. Microbiol. Biotechnol, 13(2): 175-181.
  • GU, W.L., AN, G.H., JOHNSON, E.A. (1997). Ethanol increases carotenoid production in Phaffia rhodozyma. J. Ind. Microbiol. Biotechnol, 19: 114-117. https://doi.org/10.1038/sj.jim.2900425.
  • ROUX, M.P., KOCK, J.L.F., PREEZ, J.C., BOTHA, A. (1995). Influence of dissolved oxygen tension on the production of cocoa butter equivalents and gamma-linolenic acid by Mucor circinelloides. Syst. Appl. Microbial, 18(3): 329-334. https://doi.org/10.1016/S0723-2020(11)80423-6.
  • RATLEDGE, C. & WYNN, J.P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv. Appl. Microbiol, 51: 1-51. https://doi.org/10.1016/s0065-2164(02)51000-5.
Primary Language tr
Subjects Engineering
Journal Section Articles
Authors

Author: Fuat ALAKRAA
Institution: İSTANBUL TEKNİK ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-1484-9721
Author: Ayşe SAYGÜN
Institution: İSTANBUL TEKNİK ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-4179-1932
Author: Neşe ŞAHİN YEŞİLÇUBUK (Primary Author)
Institution: İSTANBUL TEKNİK ÜNİVERSİTESİ
Country: Turkey


Supporting Institution İstanbul Teknik Üniversitesi
Project Number 37573
Thanks This research was supported from ITU BAP Project No. 37573 (ITU Scientific Research Projects Department).
Dates

Publication Date : August 31, 2020

APA Alakraa, F , Saygün, A , Şahi̇n Yeşi̇lçubuk, N . (2020). Rhodosporidium toruloides Y27012 mayasından lipit ve karotenoidlerin biyoteknolojik yolla üretimi . Avrupa Bilim ve Teknoloji Dergisi , (19) , 156-164 . DOI: 10.31590/ejosat.708556