Tarım ürünleri, dünyadaki canlıların beslenme ihtiyaçlarının karşılanması bakımından oldukça önemlidir. Dünya nüfusundaki hızlı artış tarımsal ürünlerde verimliğin arttırılmasını zorunlu hale getirmektedir. Sınırlı tarım alanlarında ürün verimliliğinin sağlanabilmesi bitkilerde görülebilecek hastalıklarının etkili bir şekilde ve zamanında tespiti oldukça önemlidir. Özellikle bazı meyve ağaçlarının kısa ömürlü olması bu ağaçlardaki hastalıkların doğru, zamanında ve hızlı bir şekilde tespitini daha önemli hale getirmektedir. Son zamanlarda görüntü işlemede yaygın olarak kullanılan derin öğrenme, tarımsal faaliyetlerde etkili uygulamalar sunmaktadır. Bu çalışmada, şeftali ağacı hastalıklarının tespiti için evrişimli sinir ağ yöntemi önerilmiştir. Önerilen yöntemde, daha önceden eğitilmiş AlexNet modeli ile şeftali ağaçlarında görülen monilya ve koşnili hastalık tespiti yapılmıştır. Deneysel çalışmalarda, TRB1 bölgesinden alınan gerçek hastalık görüntülerinden oluşan veri seti ile gerçekleştirildi. Yapılan deneysel çalışmalarda %99,30 doğruluk oranında hastalık tespiti yapılmıştır. Mevcut çalışmalardan %1,44 daha yüksek doğruluk oranına sağlandı.
Agricultural products are very important in meeting the nutritional needs of living creatures in the world. The rapid increase in the world population makes it necessary to increase the productivity in agricultural products. It is very important to ensure product productivity in limited agricultural areas and to detect diseases that can be seen in plants effectively and on time. Especially the short life of some fruit trees makes it more important to detect the diseases in these trees accurately, on time and quickly. Deep learning, which has been widely used in image processing recently, offers effective applications in agricultural activities. In this study, convolutional neural network method is proposed to detect peach tree diseases. In the proposed method, the detection of the disease with monilya laxa and sphaerolecanium prunastri in peach trees was made with the previously trained AlexNet model. Experimental studies were carried out with a dataset consisting of real disease images taken from the TRB1 region. In experimental studies, the disease was detected with an accuracy of 99.30%. Achieved 1.44% higher accuracy than existing studies.
Primary Language | Turkish |
---|---|
Subjects | Engineering |
Journal Section | Articles |
Authors | |
Publication Date | April 30, 2021 |
Published in Issue | Year 2021 Issue: 23 |