Hava Körüklerinin Statik ve Dinamik Sönümleme Özelliklerinin Sonlu Elemanlar Yöntemi ile İncelenmesi
Year 2021,
Issue: 25, 12 - 22, 31.08.2021
Hasan Kasım
,
Erol Özkan
,
Murat Yazıcı
Abstract
Araç dinamikleri açısından, süspansiyon sistemi, yüksek sürüş hızlarında yol düzensizliklerine karşı iyi sürüş kalitesini ve yol tutuş performansını korumalıdır. Körükler, uzun yıllardır ticari araçlarda ve otobüslerde, sürüş yüksekliğini korumak ve yükten bağımsız olarak araç konforunu artırmak için kullanılmaktadır. Hava yayları malzeme yapısı nedeniyle, çalışma sırasında tek yönlü gerilmelere maruz kalmazlar ve doğrusal olmayan davranış sergilerler. Kompozit yapı, farklı kalınlıktaki iç ve dış kauçuk arasında iki katman olarak zıt açılarda sarılan kord bezinden oluşur. Bu yüzden tek başına yüklemenin neden olduğu değişikliklerin ampirik olarak belirlenmesi zordur. Bu çalışmada hem deneysel hem de sonlu eleman yöntemleri ile havalı süspansiyon sisteminin bir parçası olan hava körüklerinin statik ve dinamik sönümleme özellikleri araştırılmıştır. Statik ve dinamik sönümleme özellikleri belirlenirken, farklı basınç ve deplasmanlardan dolayı körüklerde oluşan reaksiyon kuvvet değerleri kullanılmıştır. Sıkıştırma sonrası geri yaylanma esnasında deneysel ve analitik çalışmalardan elde edilen yay sabitlerinde farklılıklar gözlemlenmiştir. Minimum yüksekliğe ulaşıldıktan sonra geri hareket başladığı anda yay sabitinde yaklaşık %10'luk bir sapma gözlemlenmiş, sonrasında %6'dan daha az bir sapma değeri gözlemlenmiştir. Deneysel ve analitik çalışmalarda, anlık yükleme sonucunda elde edilen yay sabitleri arasındaki sapma değerleri %4'ün altında hava körüklerinde FEA analizinin etkin bir şekilde kullanılabileceği görülmüştür.
Supporting Institution
Pega Otomotiv San. Ve Tic. A.Ş,
Thanks
Bu çalışma için gerekli olan kompozit numunelerin ve test ekipmanının kullanımını sağlayan Pega Otomotiv Arge Merkezi çalışanlarına teşekkür ederiz.
References
- Bruni S., Vinolas J., Berg M., Polach O., Stichel S. (2011). Modelling of suspension components in a rail vehicle dynamics context. Vehicle System Dynamics, Volume 49, Issue 7, pp.1021-1072. https://doi.org/10.1080/00423114.2011.586430.
- Sun X., Yuan C., Cai Y., Wang S., Chen L. (2017). Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model. Mechanical Systems and Signal Processing, Volume 94, pp. 94-110. https://doi.org/10.1016/j.ymssp.2017.02.033.
- Lee, S.J. (2010). Development and analysis of an air spring model. International Journal of Automotive Technology, 11, pp. 471–479. https://doi.org/10.1007/s12239-010-0058-5.
- Zhu H., Yang J., Zhang Y., Feng X. (2016). A novel air spring dynamic model with pneumatic thermodynamics, effective friction and viscoelastic damping. Journal of Sound and Vibration, Volume 408, pp. 87-104. https://doi.org/10.1016/j.jsv.2017.07.015.
- Oman S., Fajdiga M., Nagode M. (2010). Estimation of air-spring life based on accelerated experiments. Materials & Design, Volume 31, Issue 8, pp. 3859-3868. https://doi.org/10.1016/j.matdes.2010.03.044.
- Li Z., Shen X., Li M., Guo J., Wu Y., Jiang W. (2011). Analysis on mechanical characteristics of diaphragm air spring for semi-active suspension. International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, pp. 4781-4784. doi: 10.1109/CECNET.2011.5768637.
- Turna E., Kafkas F., Şeker U., Yücesu H. (2018). Kauçuk Hava Süspansiyon Körüklerinin Üretim Yöntemi ve Yorulma Ömrünün Ürün Kalitesi Üzerine Etkisinin Belirlenmesi. Politeknik Dergisi, 21(4), pp. 759-764. DOI: 10.2339/politeknik.457954
- Yazıcı M., Kapucu OA., Kasım H., Can Y. (2017). Experimental Investigation on Fatigue Life of Cord-Rubber Composites. Avrupa Bilim ve Teknoloji Dergisi, Ejosat Aralık Özel Sayı, pp.16-21. https://dergipark.org.tr/tr/pub/ejosat/issue/33997/369001.
- Zhang X., Zhao G. (2015). Overview of experimental studies on strength problem of rubber material. 5th International Conference on Advanced Engineering Materials and Technology, Guangzhou, China, pp.13-22. https://doi.org/10.2991/icaemt-15.2015.4.
- Ye J., Huang H., He C., Liu G. (2018). Analysis of Vertical Stiffness of Air Spring Based on Finite Element Method. MATEC Web Conf., Volume 153, pp. 06006. DOI: 10.1051/matecconf/201815306006
- Aytaç, A., Yılmaz B., Deniz V. (2008). Kord Bezi Üretiminde büküm yönünün etkilerinin farklı deney tasarımı yöntemleri ile incelenmesi. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi, Volume 9(1), pp. 61-71. https://dergipark.org.tr/tr/pub/ifede/issue/4598/62851
- Mars, W.V., & Fatemi, A. (2004). Factors that affect the fatigue life of rubber: A literature survey. Rubber Chemistry and Technology, Volume 77, Issue 3, pp. 391-412. DOI:10.5254/1.3547831
- Oman S., Nagode M., Fajdiga M. (2009). The material characterization of the air-spring bellows sealing layer. Matererial and Design, Volume 30, Issue 4, pp.1141–1450. https://doi.org/10.1016/j.matdes.2008.06.035.
- Fatemi A., Mars WV. (2002). A literature survey on fatigue analysis approaches for rubber. International Journal of Fatigue, Volume 24, Issue 9, pp. 949-961. https://doi.org/10.1016/S0142-1123(02)00008-7
- Guo K., Li H., Chen S., Wang W., Cong F. (2013). Design of Stiffness for Air Spring Based on ABAQUS. Mathematical Problems in Engineering, Volume 2013, ArticleID 528218, 5 pages. https://doi.org/10.1155/2013/528218
- Fischer G., Streicher M., Grubisic V. (1998). Procedure for Validation Tests on Air Springs for Commercial Vehicles. SAE Technical Paper 982841. https://doi.org/10.4271/982841
- Zhang Y., Zhu H., Yang J., Feng X., Ma Z. (2017). Nonlinear dynamic model of air spring with a damper for vehicle ride comfort. Nonlinear Dynamics, Volume 89, pp.1545–1568. https://doi.org/10.1007/s11071-017-3535-9.
- Kasım H. (2012). Kabin Körüklerinin Tasarımı, Üretim Ve Test Parametrelerinin Belirlenmesi. Makine Mühendisliği, Yüksek Lisans Tezi, Uludağ Üniversitesi,Bursa,Türkiye, 2012. https://acikerisim.uludag.edu.tr/handle/11452/10028
- Xu L.(2020). Theoretical modeling of the vertical stiffness of a rolling lobe air spring. Science Progress, Volume 103, Issue 3. doi:10.1177/0036850420940898
- Zhao J., Xie Z., Wong PK., Xu T., He F. (2014). Analysis of automotive rolling lobe air spring under alternative factors with finite element model. Journal of Mechanical Science and Technology, Volume 28, pp. 5069–5081. https://doi.org/10.1007/s12206-014-1128-9
- Chen JS., Satyamurthy K., Hirschfelt lR. (1994).Consistent finite element procedures for nonlinear rubber elasticity with a higher order strain energy function. Computers & Structures,Volume 50, Issue 6, pp. 715-727. https://doi.org/10.1016/0045-7949(94)90307-7.
- Sarıoğlu B., Durmuş A. (2019). Manufacture and Testing of Air Springs Used in Railway Vehicles. Arabian Journal for Science and Engineering, Volume 44, pp. 7967–7977. https://doi.org/10.1007/s13369-019-03981-w
- Jamshidi M., Afshar F., Shamayeli B. (2006). Evaluation of cord/rubber adhesion by a new fatigue test method. Journal of Applied Polymer Science , Volume 101, Issue 4, pp. 2488–2494. https://doi.org/10.1002/app.23532
- Wenku S., Wan J., Ying H., Weimin Y., Hao Y., Zubin L. (2009). Finite element analysis of an air spring concerning initial pressure and parameters of cord fabric layer. Asia-Pacific Conference on Computational Intelligence and Industrial Applications (PACIIA), Wuhan, China, 2009, pp. 496-499. doi: 10.1109/PACIIA.2009.5406380.
- Shahzad M., Kamran A., Siddiqui MZ., Farhan M. (2015). Mechanical Characterization and FE Modelling of a Hyperelastic Material. Materials Research, Volume 15, Issue 5, pp. 1516-1439. http://dx.doi.org/10.1590/1516-1439.320414
- Eskandary PK., Khajepour A., Wong A., Ansari M. 82016). Analysis and optimization of air suspension system with independent height and stiffness tuning. International Journal of Automotive Technology, Volume 17, pp. 807–816. https://doi.org/10.1007/s12239-016-0079-9
Examination of the Static and Dynamic Damping Properties of Air Springs by Method of Finite Elements
Year 2021,
Issue: 25, 12 - 22, 31.08.2021
Hasan Kasım
,
Erol Özkan
,
Murat Yazıcı
Abstract
In terms of vehicle dynamics, the suspension system must maintain good ride quality and handling performance against road irregularities, especially at high driving speeds. Air springs have been used in commercial vehicles and buses for many years to maintain ride height and increase vehicle comfort regardless of load. Due to the air springs' material structure, they are not subjected to unidirectional stresses during operation and exhibit non-linear behavior. The composite structure consists of four layers with cord fabric wrapped at opposite angles as two layers between inner and outer tires of different thickness. Therefore, the changes caused by loading alone are difficult to determine empirically. In this study, both experimental and finite element methods investigated the static and dynamic damping properties of air bellows, which are a part of the air suspension system. While determining the static and dynamic damping properties, the reaction force values formed in the bellows due to different pressure and displacement were used. Differences were observed in spring constants obtained from experimental and analytical studies during spring back after compression. After reaching the minimum height, a deviation of about 10% in the spring constant was observed when the backward movement started, and then a deviation of less than 6% was obtained. In experimental tests and analytical studies, it has been observed that the deflection values between the spring constants obtained as a result of instantaneous loading remain below 4% and that FEA analysis can be used effectively in air spring analysis.
References
- Bruni S., Vinolas J., Berg M., Polach O., Stichel S. (2011). Modelling of suspension components in a rail vehicle dynamics context. Vehicle System Dynamics, Volume 49, Issue 7, pp.1021-1072. https://doi.org/10.1080/00423114.2011.586430.
- Sun X., Yuan C., Cai Y., Wang S., Chen L. (2017). Model predictive control of an air suspension system with damping multi-mode switching damper based on hybrid model. Mechanical Systems and Signal Processing, Volume 94, pp. 94-110. https://doi.org/10.1016/j.ymssp.2017.02.033.
- Lee, S.J. (2010). Development and analysis of an air spring model. International Journal of Automotive Technology, 11, pp. 471–479. https://doi.org/10.1007/s12239-010-0058-5.
- Zhu H., Yang J., Zhang Y., Feng X. (2016). A novel air spring dynamic model with pneumatic thermodynamics, effective friction and viscoelastic damping. Journal of Sound and Vibration, Volume 408, pp. 87-104. https://doi.org/10.1016/j.jsv.2017.07.015.
- Oman S., Fajdiga M., Nagode M. (2010). Estimation of air-spring life based on accelerated experiments. Materials & Design, Volume 31, Issue 8, pp. 3859-3868. https://doi.org/10.1016/j.matdes.2010.03.044.
- Li Z., Shen X., Li M., Guo J., Wu Y., Jiang W. (2011). Analysis on mechanical characteristics of diaphragm air spring for semi-active suspension. International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, pp. 4781-4784. doi: 10.1109/CECNET.2011.5768637.
- Turna E., Kafkas F., Şeker U., Yücesu H. (2018). Kauçuk Hava Süspansiyon Körüklerinin Üretim Yöntemi ve Yorulma Ömrünün Ürün Kalitesi Üzerine Etkisinin Belirlenmesi. Politeknik Dergisi, 21(4), pp. 759-764. DOI: 10.2339/politeknik.457954
- Yazıcı M., Kapucu OA., Kasım H., Can Y. (2017). Experimental Investigation on Fatigue Life of Cord-Rubber Composites. Avrupa Bilim ve Teknoloji Dergisi, Ejosat Aralık Özel Sayı, pp.16-21. https://dergipark.org.tr/tr/pub/ejosat/issue/33997/369001.
- Zhang X., Zhao G. (2015). Overview of experimental studies on strength problem of rubber material. 5th International Conference on Advanced Engineering Materials and Technology, Guangzhou, China, pp.13-22. https://doi.org/10.2991/icaemt-15.2015.4.
- Ye J., Huang H., He C., Liu G. (2018). Analysis of Vertical Stiffness of Air Spring Based on Finite Element Method. MATEC Web Conf., Volume 153, pp. 06006. DOI: 10.1051/matecconf/201815306006
- Aytaç, A., Yılmaz B., Deniz V. (2008). Kord Bezi Üretiminde büküm yönünün etkilerinin farklı deney tasarımı yöntemleri ile incelenmesi. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi, Volume 9(1), pp. 61-71. https://dergipark.org.tr/tr/pub/ifede/issue/4598/62851
- Mars, W.V., & Fatemi, A. (2004). Factors that affect the fatigue life of rubber: A literature survey. Rubber Chemistry and Technology, Volume 77, Issue 3, pp. 391-412. DOI:10.5254/1.3547831
- Oman S., Nagode M., Fajdiga M. (2009). The material characterization of the air-spring bellows sealing layer. Matererial and Design, Volume 30, Issue 4, pp.1141–1450. https://doi.org/10.1016/j.matdes.2008.06.035.
- Fatemi A., Mars WV. (2002). A literature survey on fatigue analysis approaches for rubber. International Journal of Fatigue, Volume 24, Issue 9, pp. 949-961. https://doi.org/10.1016/S0142-1123(02)00008-7
- Guo K., Li H., Chen S., Wang W., Cong F. (2013). Design of Stiffness for Air Spring Based on ABAQUS. Mathematical Problems in Engineering, Volume 2013, ArticleID 528218, 5 pages. https://doi.org/10.1155/2013/528218
- Fischer G., Streicher M., Grubisic V. (1998). Procedure for Validation Tests on Air Springs for Commercial Vehicles. SAE Technical Paper 982841. https://doi.org/10.4271/982841
- Zhang Y., Zhu H., Yang J., Feng X., Ma Z. (2017). Nonlinear dynamic model of air spring with a damper for vehicle ride comfort. Nonlinear Dynamics, Volume 89, pp.1545–1568. https://doi.org/10.1007/s11071-017-3535-9.
- Kasım H. (2012). Kabin Körüklerinin Tasarımı, Üretim Ve Test Parametrelerinin Belirlenmesi. Makine Mühendisliği, Yüksek Lisans Tezi, Uludağ Üniversitesi,Bursa,Türkiye, 2012. https://acikerisim.uludag.edu.tr/handle/11452/10028
- Xu L.(2020). Theoretical modeling of the vertical stiffness of a rolling lobe air spring. Science Progress, Volume 103, Issue 3. doi:10.1177/0036850420940898
- Zhao J., Xie Z., Wong PK., Xu T., He F. (2014). Analysis of automotive rolling lobe air spring under alternative factors with finite element model. Journal of Mechanical Science and Technology, Volume 28, pp. 5069–5081. https://doi.org/10.1007/s12206-014-1128-9
- Chen JS., Satyamurthy K., Hirschfelt lR. (1994).Consistent finite element procedures for nonlinear rubber elasticity with a higher order strain energy function. Computers & Structures,Volume 50, Issue 6, pp. 715-727. https://doi.org/10.1016/0045-7949(94)90307-7.
- Sarıoğlu B., Durmuş A. (2019). Manufacture and Testing of Air Springs Used in Railway Vehicles. Arabian Journal for Science and Engineering, Volume 44, pp. 7967–7977. https://doi.org/10.1007/s13369-019-03981-w
- Jamshidi M., Afshar F., Shamayeli B. (2006). Evaluation of cord/rubber adhesion by a new fatigue test method. Journal of Applied Polymer Science , Volume 101, Issue 4, pp. 2488–2494. https://doi.org/10.1002/app.23532
- Wenku S., Wan J., Ying H., Weimin Y., Hao Y., Zubin L. (2009). Finite element analysis of an air spring concerning initial pressure and parameters of cord fabric layer. Asia-Pacific Conference on Computational Intelligence and Industrial Applications (PACIIA), Wuhan, China, 2009, pp. 496-499. doi: 10.1109/PACIIA.2009.5406380.
- Shahzad M., Kamran A., Siddiqui MZ., Farhan M. (2015). Mechanical Characterization and FE Modelling of a Hyperelastic Material. Materials Research, Volume 15, Issue 5, pp. 1516-1439. http://dx.doi.org/10.1590/1516-1439.320414
- Eskandary PK., Khajepour A., Wong A., Ansari M. 82016). Analysis and optimization of air suspension system with independent height and stiffness tuning. International Journal of Automotive Technology, Volume 17, pp. 807–816. https://doi.org/10.1007/s12239-016-0079-9