Research Article
BibTex RIS Cite

Kükürt Giderme Prosesli Oksi-Yakıt Yanmalı Enerji Santrali Modeli ve Farklı Kömür Tiplerinin İşletme Parametrelerine Etkisi

Year 2021, Issue: 25, 636 - 643, 31.08.2021
https://doi.org/10.31590/ejosat.942155

Abstract

Temiz kömür teknolojileri, kömürün üretimi, hazırlanması ve kullanımında çevresel kabul edilebilirliği ve verimliliği artıran uygulamalar olarak tanımlanmaktadır. Temiz kömür teknolojileri ile emisyon ve atıkları azaltarak birim ton başına elde edilecek enerji miktarını artırmak mümkündür. Bununla birlikte, günümüzde çevrenin korunması ve iklim değişikliğiyle mücadeleye ilişkin yasal düzenlemelerin bir sonucu olarak uyulması zorunlu katı yaptırımlar mevcuttur. Bu noktada özellikle oksi-yakıt yanma işleminin (CO2 depolama imkânı ile) yer aldığı "temiz kömür yakma teknolojileri" ön plana çıkmaktadır. Bu çalışmada, brüt elektrik üretimi 500 MW olan bir termik santralde oksijen ile yakıt yakma yöntemi ele alınmıştır. Bu termik santral modelinde ayrıca bir akışkan yataklı kurutucu, bir desülfürizasyon tesisi ve bir CO2 depolama prosesi bulunmaktadır. Farklı özellikteki kömürlerin yanma sonuçları incelenmiş ve işletme parametrelerine olan etkileri araştırılmıştır.

References

  • Arslan, O., & Erbas, O. (2021). Investigation on the improvement of the combustion process through hybrid dewatering and air pre-heating process: A case study for a 150 MW coal-fired boiler. Journal of the Taiwan Institute of Chemical Engineers, 121, 229-240.
  • Erbas, O., & Rahim, M. A. (2009) Düşük Kaliteli Linyitlerin Ultra Süper Kritik Kazanlarda Yakıt Olarak Kullanılması. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, (018), 83-90.
  • Gopan, A., Kumfer, B. M., & Axelbaum, R. L. (2015). Effect of operating pressure and fuel moisture on net plant efficiency of a staged, pressurized oxy-combustion power plant. International Journal of Greenhouse Gas Control, 39, 390-396.
  • Gopan, A., Verma, P., Yang, Z., & Axelbaum, R. L. (2020). Quantitative analysis of the impact of flue gas recirculation on the efficiency of oxy-coal power plants. International Journal of Greenhouse Gas Control, 95, 102936.
  • ICCTS (International Clean Coal Technologies Summit) (2017, May 18-19), Summit results report. Istanbul, Turkey.
  • Kim, J. H., Lee, H. S., Kim, H. H., & Ogata, A. (2010). Electrospray with electrostatic precipitator enhances fine particles collection efficiency. Journal of Electrostatics, 68(4), 305-310.
  • Moon, J. H., Jo, S. H., Park, S. J., Khoi, N. H., Seo, M. W., Ra, H. W., ... & Mun, T. Y. (2019). Carbon dioxide purity and combustion characteristics of oxy firing compared to air firing in a pilot-scale circulating fluidized bed. Energy, 166, 183-192.
  • Pang, L., Shao, Y., Zhong, W., Gong, Z., & Liu, H. (2020). Experimental study of NOx emissions in a 30 kWth pressurized oxy-coal fluidized bed combustor. Energy, 194, 116756.
  • Portillo, E., Fernández, L. M. G., Vega, F., Alonso-Fariñas, B., & Navarrete, B. (2021). Oxygen transport membrane unit applied to oxy-combustion coal power plants: A thermodynamic assessment. Journal of Environmental Chemical Engineering, 9(4), 105266.
  • Skorek-Osikowska, A., Bartela, L., Kotowicz, J., & Job, M. (2013). Thermodynamic and economic analysis of the different variants of a coal-fired, 460 MW power plant using oxy-combustion technology. Energy Conversion and management, 76, 109-120.
  • TUBA-EWG (Energy Working Group) (2018), Clean coal technologies report (in Turkish). Turkish Academy of Sciences Publications.
  • Xiong, J., Zhao, H., Chen, M., & Zheng, C. (2011). Simulation study of an 800 MWe oxy-combustion pulverized-coal-fired power plant. Energy & Fuels, 25(5), 2405-2415.
  • White, V., Torrente-Murciano, L., Sturgeon, D., & Chadwick, D. (2009). Purification of oxy-fuel-derived CO2. Energy Procedia, 1(1), 399-406.
  • Yan, K., Wu, X., Hoadley, A., Xu, X., Zhang, J., & Zhang, L. (2015). Sensitivity analysis of oxy-fuel power plant system. Energy Conversion and Management, 98, 138-150.
  • Yılmazoglu, M. Z. (2010). Pre-Combustion Carbondioxide Capture in Integrated Gasification Combined Cycles. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi; Cilt: 16 Sayı: 2; 173-179.
  • Zheng, L. (Ed.). (2011). Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture. Elsevier Woodhead Publishing Limited, Philadelphia,17-31.

The Oxy-Fuel Combustion Power Plant Model with Desulphurization Process and The Effect of Different Types of Coal on Operating Parameters

Year 2021, Issue: 25, 636 - 643, 31.08.2021
https://doi.org/10.31590/ejosat.942155

Abstract

Clean coal technologies are defined as applications that improve environmental acceptability and efficiency in producing, preparing and using coal. With clean coal technologies, it is possible to increase the amount of energy obtained per unit ton by reducing emissions and wastes. However, today there are strict sanctions that must be followed due to the legal regulations on the protection of the environment and combating climate change. At this point, the clean coal-burning technologies in which the oxy-fuel combustion process (with the possibility of CO2 storage) takes place come to the fore. In this study, the method of burning fuel with oxygen in a thermal power plant with a gross electricity generation of 500 MW was discussed. This thermal power plant model also has a fluidized bed dryer, a desulphurization plant, and a CO2 storage process. The combustion results of different properties of coals were examined, and their effect on operating parameters was investigated..

References

  • Arslan, O., & Erbas, O. (2021). Investigation on the improvement of the combustion process through hybrid dewatering and air pre-heating process: A case study for a 150 MW coal-fired boiler. Journal of the Taiwan Institute of Chemical Engineers, 121, 229-240.
  • Erbas, O., & Rahim, M. A. (2009) Düşük Kaliteli Linyitlerin Ultra Süper Kritik Kazanlarda Yakıt Olarak Kullanılması. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, (018), 83-90.
  • Gopan, A., Kumfer, B. M., & Axelbaum, R. L. (2015). Effect of operating pressure and fuel moisture on net plant efficiency of a staged, pressurized oxy-combustion power plant. International Journal of Greenhouse Gas Control, 39, 390-396.
  • Gopan, A., Verma, P., Yang, Z., & Axelbaum, R. L. (2020). Quantitative analysis of the impact of flue gas recirculation on the efficiency of oxy-coal power plants. International Journal of Greenhouse Gas Control, 95, 102936.
  • ICCTS (International Clean Coal Technologies Summit) (2017, May 18-19), Summit results report. Istanbul, Turkey.
  • Kim, J. H., Lee, H. S., Kim, H. H., & Ogata, A. (2010). Electrospray with electrostatic precipitator enhances fine particles collection efficiency. Journal of Electrostatics, 68(4), 305-310.
  • Moon, J. H., Jo, S. H., Park, S. J., Khoi, N. H., Seo, M. W., Ra, H. W., ... & Mun, T. Y. (2019). Carbon dioxide purity and combustion characteristics of oxy firing compared to air firing in a pilot-scale circulating fluidized bed. Energy, 166, 183-192.
  • Pang, L., Shao, Y., Zhong, W., Gong, Z., & Liu, H. (2020). Experimental study of NOx emissions in a 30 kWth pressurized oxy-coal fluidized bed combustor. Energy, 194, 116756.
  • Portillo, E., Fernández, L. M. G., Vega, F., Alonso-Fariñas, B., & Navarrete, B. (2021). Oxygen transport membrane unit applied to oxy-combustion coal power plants: A thermodynamic assessment. Journal of Environmental Chemical Engineering, 9(4), 105266.
  • Skorek-Osikowska, A., Bartela, L., Kotowicz, J., & Job, M. (2013). Thermodynamic and economic analysis of the different variants of a coal-fired, 460 MW power plant using oxy-combustion technology. Energy Conversion and management, 76, 109-120.
  • TUBA-EWG (Energy Working Group) (2018), Clean coal technologies report (in Turkish). Turkish Academy of Sciences Publications.
  • Xiong, J., Zhao, H., Chen, M., & Zheng, C. (2011). Simulation study of an 800 MWe oxy-combustion pulverized-coal-fired power plant. Energy & Fuels, 25(5), 2405-2415.
  • White, V., Torrente-Murciano, L., Sturgeon, D., & Chadwick, D. (2009). Purification of oxy-fuel-derived CO2. Energy Procedia, 1(1), 399-406.
  • Yan, K., Wu, X., Hoadley, A., Xu, X., Zhang, J., & Zhang, L. (2015). Sensitivity analysis of oxy-fuel power plant system. Energy Conversion and Management, 98, 138-150.
  • Yılmazoglu, M. Z. (2010). Pre-Combustion Carbondioxide Capture in Integrated Gasification Combined Cycles. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi; Cilt: 16 Sayı: 2; 173-179.
  • Zheng, L. (Ed.). (2011). Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture. Elsevier Woodhead Publishing Limited, Philadelphia,17-31.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Oğuzhan Erbaş 0000-0001-9424-4273

Halit Arat 0000-0002-6634-2535

Publication Date August 31, 2021
Published in Issue Year 2021 Issue: 25

Cite

APA Erbaş, O., & Arat, H. (2021). The Oxy-Fuel Combustion Power Plant Model with Desulphurization Process and The Effect of Different Types of Coal on Operating Parameters. Avrupa Bilim Ve Teknoloji Dergisi(25), 636-643. https://doi.org/10.31590/ejosat.942155