Research Article
BibTex RIS Cite

Deterjan Esaslı Hücresizleştirilen Tavuk Derisinin Doku İskelesi Olarak Karakterizasyonu

Year 2021, Issue: 27, 1010 - 1017, 30.11.2021
https://doi.org/10.31590/ejosat.889435

Abstract

Özellikle son yıllarda doku mühendisliği uygulamaları için biyomalzemeler elde etmek amacıyla birçok doku ve organa hücresizleştirme yöntemi uygulanmıştır. Bu çalışmada, potansiyel bir doku iskelesi olarak hücresizleştirilmiş tavuk derisinin hazırlanması ve karakterizasyonu ile ilgili kapsamlı ve ayrıntılı incelemeler gerçekleştirilmiştir. Hücresizleştirme ajanı olarak kullanılan sodyum deoksikolat farklı zaman aralıklarında dokulara uygulanarak hücresizleştirme sürecinde en uygun yöntemin bulunabilmesi amacıyla DNA miktar tayini, hücresel bileşenlerin uzaklaştırılması, mekanik özellikler, ekstraselüler matriksin (ESM) korunması ve hücre canlılığı ile ilgili analizler yapılmıştır. Elde edilen sonuçlar, hücresizleştirme süresinin uzatılmasının hücresel bileşenlerin uzaklaştırılması ve dokudan uzaklaştırılan DNA miktarı yönünden avantaj sağlarken diğer taraftan ESM’nin korunması, mekanik özellikler ve hücre canlılığı yönünden dezavantaja sebep olduğunu göstermiştir. Bununla birlikte hücresizleştirilmiş tavuk derisinin, hücre tutunması, büyümesi ve proliferasyonunu destekleyen özellikte olduğu gösterilerek hazırlanan malzemenin biyouyumlu olduğu kanıtlanmıştır. Sonuç olarak, bu çalışmada hücresizleştirilmiş tavuk derisinin kolayca bulunabilen, ucuz ve biyouyumlu bir malzeme olarak, özellikle deri dokusu mühendisliği olmak üzere doku mühendisliği ile ilgili daha ileri çalışmalar için doku iskelesi hazırlanması amacıyla kullanılabilecek uygun bir biyomalzeme olduğu gösterilmiştir.

References

  • Alshaikh, A. B., Padma, A. M., Dehlin, M., Akouri, R., Song, M. J., Brännström, M., & Hellström, M. (2019). Decellularization of the mouse ovary: Comparison of different scaffold generation protocols for future ovarian bioengineering. Journal of Ovarian Research, 12(1), 58. https://doi.org/10.1186/s13048-019-0531-3
  • Ark, M., Ozdemir, A., Şimay Demir, Y. D., & İbişoğlu, B. (2017). Hücre Kültürü ve Temel Moleküler Biyoloji Protokolleri.
  • Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue engineering and regenerative medicine: History, progress, and challenges. Annual Review of Chemical and Biomolecular Engineering, 2, 403-430. https://doi.org/10.1146/annurev-chembioeng-061010-114257
  • Couteaudier, M., & Denesvre, C. (2014). Marek’s disease virus and skin interactions. Veterinary Research, 45, 36. https://doi.org/10.1186/1297-9716-45-36
  • Estes, B. T., Diekman, B. O., Gimble, J. M., & Guilak, F. (2010). Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nature Protocols, 5(7), 1294-1311. https://doi.org/10.1038/nprot.2010.81
  • Evans, D. W., Moran, E. C., Baptista, P. M., Soker, S., & Sparks, J. L. (2013). Scale-dependent mechanical properties of native and decellularized liver tissue. Biomechanics and Modeling in Mechanobiology, 12(3), 569-580. https://doi.org/10.1007/s10237-012-0426-3
  • Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27(19), 3675-3683. https://doi.org/10.1016/j.biomaterials.2006.02.014
  • Gilpin, A., & Yang, Y. (2017). Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BioMed Research International, 2017, 9831534. https://doi.org/10.1155/2017/9831534
  • Grauss, R. W., Hazekamp, M. G., van Vliet, S., Gittenberger-de Groot, A. C., & DeRuiter, M. C. (2003). Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. The Journal of Thoracic and Cardiovascular Surgery, 126(6), 2003-2010. https://doi.org/10.1016/s0022-5223(03)00956-5
  • Inci, I., Norouz Dizaji, A., Ozel, C., Morali, U., Dogan Guzel, F., & Avci, H. (2020). Decellularized inner body membranes for tissue engineering: A review. Journal of Biomaterials Science. Polymer Edition, 31(10), 1287-1368. https://doi.org/10.1080/09205063.2020.1751523
  • Jalili‐Firoozinezhad, S., Rajabi‐Zeleti, S., Marsano, A., Aghdami, N., & Baharvand, H. (2016). Influence of decellularized pericardium matrix on the behavior of cardiac progenitors. Journal of Applied Polymer Science, 133(14). https://doi.org/10.1002/app.43255
  • Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science (New York, N.Y.), 260(5110), 920-926. https://doi.org/10.1126/science.8493529
  • Liao, J., Xu, B., Zhang, R., Fan, Y., Xie, H., & Li, X. (2020). Applications of decellularized materials in tissue engineering: Advantages, drawbacks and current improvements, and future perspectives. Journal of Materials Chemistry B, 8(44), 10023-10049. https://doi.org/10.1039/D0TB01534B
  • Mirzarafie, A., Grainger, R. K., Thomas, B., Bains, W., Ustok, F. I., & Lowe, C. R. (2014). A fast and mild decellularization protocol for obtaining extracellular matrix. Rejuvenation Research, 17(2), 159-160. https://doi.org/10.1089/rej.2013.1488
  • Odabas, S., Feichtinger, G. A., Korkusuz, P., Inci, I., Bilgic, E., Yar, A. S., Cavusoglu, T., Menevse, S., Vargel, I., & Piskin, E. (2013). Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes. Journal of Tissue Engineering and Regenerative Medicine, 7(10), 831-840. https://doi.org/10.1002/term.1634
  • Rajabi-Zeleti, S., Jalili-Firoozinezhad, S., Azarnia, M., Khayyatan, F., Vahdat, S., Nikeghbalian, S., Khademhosseini, A., Baharvand, H., & Aghdami, N. (2014). The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials, 35(3), 970-982. https://doi.org/10.1016/j.biomaterials.2013.10.045
  • Tavassoli, A., Matin, M. M., Niaki, M. A., Mahdavi-Shahri, N., & Shahabipour, F. (2015). Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold. Iranian Journal of Basic Medical Sciences, 18(12), 1221-1227.
  • Vishwakarma, S. K., Bardia, A., Lakkireddy, C., Paspala, S. A. B., & Khan, A. A. (2018). Bioengineering Human Neurological Constructs Using Decellularized Meningeal Scaffolds for Application in Spinal Cord Injury. Frontiers in Bioengineering and Biotechnology, 6. https://doi.org/10.3389/fbioe.2018.00150

Characterization of Detergent-based Decellularized Chicken Skin as a Tissue Scaffold

Year 2021, Issue: 27, 1010 - 1017, 30.11.2021
https://doi.org/10.31590/ejosat.889435

Abstract

Especially in recent years, decellularization method has been applied to many tissues and organs in order to obtain biomaterials for tissue engineering applications. In this study, comprehensive and detailed investigations were carried out on preparation and characterization of decellularized chicken skin as a potential tissue scaffold. Sodium deoxycholate was applied to tissues as a decellularization agent at different time intervals and analysis were performed on DNA quantitation, removal of cellular components, mechanical properties, preserving the extracellular matrix (ECM) and cell viability to find the most appropriate method in the process of decellularization. The results showed that extending the duration of decellularization provides advantages in terms of the removal of cellular components and the amount of DNA removed from the tissue, on the other hand, it causes disadvantages in terms of protection of ECM, mechanical properties, and cell viability. However, the prepared material was proven to be biocompatible by showing that decellularized chicken skin is capable of supporting cell attachment, growth, and proliferation. In conclusion, in this study, it was shown that decellularized chicken skin is an easily available, inexpensive, and biocompatible material that can be used for preparation of tissue scaffold for further studies in tissue engineering, especially in skin tissue engineering.

References

  • Alshaikh, A. B., Padma, A. M., Dehlin, M., Akouri, R., Song, M. J., Brännström, M., & Hellström, M. (2019). Decellularization of the mouse ovary: Comparison of different scaffold generation protocols for future ovarian bioengineering. Journal of Ovarian Research, 12(1), 58. https://doi.org/10.1186/s13048-019-0531-3
  • Ark, M., Ozdemir, A., Şimay Demir, Y. D., & İbişoğlu, B. (2017). Hücre Kültürü ve Temel Moleküler Biyoloji Protokolleri.
  • Berthiaume, F., Maguire, T. J., & Yarmush, M. L. (2011). Tissue engineering and regenerative medicine: History, progress, and challenges. Annual Review of Chemical and Biomolecular Engineering, 2, 403-430. https://doi.org/10.1146/annurev-chembioeng-061010-114257
  • Couteaudier, M., & Denesvre, C. (2014). Marek’s disease virus and skin interactions. Veterinary Research, 45, 36. https://doi.org/10.1186/1297-9716-45-36
  • Estes, B. T., Diekman, B. O., Gimble, J. M., & Guilak, F. (2010). Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nature Protocols, 5(7), 1294-1311. https://doi.org/10.1038/nprot.2010.81
  • Evans, D. W., Moran, E. C., Baptista, P. M., Soker, S., & Sparks, J. L. (2013). Scale-dependent mechanical properties of native and decellularized liver tissue. Biomechanics and Modeling in Mechanobiology, 12(3), 569-580. https://doi.org/10.1007/s10237-012-0426-3
  • Gilbert, T. W., Sellaro, T. L., & Badylak, S. F. (2006). Decellularization of tissues and organs. Biomaterials, 27(19), 3675-3683. https://doi.org/10.1016/j.biomaterials.2006.02.014
  • Gilpin, A., & Yang, Y. (2017). Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. BioMed Research International, 2017, 9831534. https://doi.org/10.1155/2017/9831534
  • Grauss, R. W., Hazekamp, M. G., van Vliet, S., Gittenberger-de Groot, A. C., & DeRuiter, M. C. (2003). Decellularization of rat aortic valve allografts reduces leaflet destruction and extracellular matrix remodeling. The Journal of Thoracic and Cardiovascular Surgery, 126(6), 2003-2010. https://doi.org/10.1016/s0022-5223(03)00956-5
  • Inci, I., Norouz Dizaji, A., Ozel, C., Morali, U., Dogan Guzel, F., & Avci, H. (2020). Decellularized inner body membranes for tissue engineering: A review. Journal of Biomaterials Science. Polymer Edition, 31(10), 1287-1368. https://doi.org/10.1080/09205063.2020.1751523
  • Jalili‐Firoozinezhad, S., Rajabi‐Zeleti, S., Marsano, A., Aghdami, N., & Baharvand, H. (2016). Influence of decellularized pericardium matrix on the behavior of cardiac progenitors. Journal of Applied Polymer Science, 133(14). https://doi.org/10.1002/app.43255
  • Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science (New York, N.Y.), 260(5110), 920-926. https://doi.org/10.1126/science.8493529
  • Liao, J., Xu, B., Zhang, R., Fan, Y., Xie, H., & Li, X. (2020). Applications of decellularized materials in tissue engineering: Advantages, drawbacks and current improvements, and future perspectives. Journal of Materials Chemistry B, 8(44), 10023-10049. https://doi.org/10.1039/D0TB01534B
  • Mirzarafie, A., Grainger, R. K., Thomas, B., Bains, W., Ustok, F. I., & Lowe, C. R. (2014). A fast and mild decellularization protocol for obtaining extracellular matrix. Rejuvenation Research, 17(2), 159-160. https://doi.org/10.1089/rej.2013.1488
  • Odabas, S., Feichtinger, G. A., Korkusuz, P., Inci, I., Bilgic, E., Yar, A. S., Cavusoglu, T., Menevse, S., Vargel, I., & Piskin, E. (2013). Auricular cartilage repair using cryogel scaffolds loaded with BMP-7-expressing primary chondrocytes. Journal of Tissue Engineering and Regenerative Medicine, 7(10), 831-840. https://doi.org/10.1002/term.1634
  • Rajabi-Zeleti, S., Jalili-Firoozinezhad, S., Azarnia, M., Khayyatan, F., Vahdat, S., Nikeghbalian, S., Khademhosseini, A., Baharvand, H., & Aghdami, N. (2014). The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials, 35(3), 970-982. https://doi.org/10.1016/j.biomaterials.2013.10.045
  • Tavassoli, A., Matin, M. M., Niaki, M. A., Mahdavi-Shahri, N., & Shahabipour, F. (2015). Mesenchymal stem cells can survive on the extracellular matrix-derived decellularized bovine articular cartilage scaffold. Iranian Journal of Basic Medical Sciences, 18(12), 1221-1227.
  • Vishwakarma, S. K., Bardia, A., Lakkireddy, C., Paspala, S. A. B., & Khan, A. A. (2018). Bioengineering Human Neurological Constructs Using Decellularized Meningeal Scaffolds for Application in Spinal Cord Injury. Frontiers in Bioengineering and Biotechnology, 6. https://doi.org/10.3389/fbioe.2018.00150
There are 18 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

İlyas İnci 0000-0001-7231-7822

Early Pub Date July 29, 2021
Publication Date November 30, 2021
Published in Issue Year 2021 Issue: 27

Cite

APA İnci, İ. (2021). Deterjan Esaslı Hücresizleştirilen Tavuk Derisinin Doku İskelesi Olarak Karakterizasyonu. Avrupa Bilim Ve Teknoloji Dergisi(27), 1010-1017. https://doi.org/10.31590/ejosat.889435