Research Article
BibTex RIS Cite

Validation of an elastomeric bearing characterized with finite element hyperelastic models

Year 2021, Issue: 27, 471 - 478, 30.11.2021
https://doi.org/10.31590/ejosat.930964

Abstract

Elastomeric bearing is a crucial element of a structure. To study these elements' behavior under different loads, a correct strain energy function should be selected to predict the nonlinear hyperelastic behavior accurately. Physical compression test performed on a sample of a steel laminated elastomeric bearing, which is originally used on structure foundation to resist seismic forces. A finite element software was used to simulate physical test for seven different hyperelastic models. Error percentages were also calculated and compared between all models with the experimental data. The results of these seven models were validated in order to select the most fitted form. Multiple models gave an accurate prediction of this element behavior. Reduced Polynomial form was the best choice to model compression tests and the finite element simulation showed an accurate prediction for bearing behavior, the model curve is perfectly fitted with the physical test curve and the maximum error percentage was less than 7% and less than 2% minimum error.

References

  • Abaqus. (2012). Analysis User’s Manual 6.12, Volume II.
  • Abaqus-Docs. (2017). Hyperelastic behavior of rubberlike materials. Retrieved from Abaqus Documentaions: https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-hyperelastic.htm
  • AFAD. (2019, April 10). T.C. İÇİŞLERİ BAKANLIĞI Afet ve Acil Durum Yönetimi Başkanlığı. Retrieved from https://deprem.afad.gov.tr/depremkatalogu
  • Arruda, E. M. (1993). A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2), 389-412. Retrieved from http://dx.doi.org/10.1016/0022-5096(93)90013-6
  • Barroso, A. E. (2012). Biaxial testing of composites in uniaxial machines: manufacturing of a device, analysis of the specimen geometry and preliminary experimental results. 15th European Conference on Composite Materials: Composites at Venice, ECCM., 2012.
  • Crocker, L. E. (1999). Hyperelastic modelling of flexible adhesives.
  • EKŞİ, K. (2019). Investigate Elastomeric Bearings Under Fatigue Loading. Master Thesis, Yildiz Technical University.
  • Fragnet, M. (2013). Elastomers and Rubbers used in Civil Engineering. Organic Materials for Sustainable Construction.
  • Medellín, L. F. (2017). Design of a biaxial test module for uniaxial testing machine. 4.8, 7911-7920.
  • Miler, K. (2004). Testing elastomers for finite element analysis. Axel Products.
  • Mooney, M. (1940). A theory of large elastic deformation. Journal of applied physics, 11(9), 582-592. Retrieved from https://doi.org/10.1063/1.1712836
  • Ogden, R. W. (1972). Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 326(1567), 565-584. Retrieved from http://dx.doi.org/10.1098/
  • Rivlin, R. S. (1948). Large elastic deformations of isotropic materials. I. Fundamental concepts. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240(822), 459-490.
  • Shahzad, M. E. (2015). Mechanical characterization and FE modelling of a hyperelastic material. Materials Research 18.5, 918-924.
  • Sugihardjo, H. T. (2018). FE Model of Low Grade Rubber for Modeling Housing’s Low-Cost Rubber Base Isolators. Civil engineering journal, 24-45.
  • Yeoh, O. H. (1993). Some forms of the strain energy function for rubber. Rubber Chemistry and technology, 66(5), 754-771.

Sonlu eleman hiperelastik modellerle karakterize edilen bir elastomerik mesnedin doğrulanması

Year 2021, Issue: 27, 471 - 478, 30.11.2021
https://doi.org/10.31590/ejosat.930964

Abstract

Elastomerik mesnet, bir yapının çok önemli bir unsurudur. Bu elemanların farklı yükler altındaki davranışını incelemek için, doğrusal olmayan hiperelastik modeli doğru bir şekilde tahmin etmek için doğru bir gerinim enerjisi fonksiyonu seçilmelidir. Sismik kuvvetlere karşı bina temellerinde kullanılan çelik tabakalarla güçlendirilmiş bir elastomerik mesnet numunesi üzerinde gerçekleştirilen fiziksel basınç testi yapıldı. Fiziksel testleri simüle etmek için bir sonlu eleman yazılımı kullanılmıştır. Hata yüzdesi hesaplandı ve test verisiyle yedi model arasında karşılaştırma yapıldı. Bu yedi modelin sonuçları, en uygun formu seçmek için doğrulanmıştır. Birden çok model, bu eleman davranışının doğru bir tahminini verdi. Azaltılmış Polinom formu ise basınç testlerini modellemek için en iyi seçimdi ve sonlu elemanlar simülasyonu, eğri uydurma ve hata yüzdesi bakımından eğilme davranışı için doğru bir tahmin gösterdi.

References

  • Abaqus. (2012). Analysis User’s Manual 6.12, Volume II.
  • Abaqus-Docs. (2017). Hyperelastic behavior of rubberlike materials. Retrieved from Abaqus Documentaions: https://abaqus-docs.mit.edu/2017/English/SIMACAEMATRefMap/simamat-c-hyperelastic.htm
  • AFAD. (2019, April 10). T.C. İÇİŞLERİ BAKANLIĞI Afet ve Acil Durum Yönetimi Başkanlığı. Retrieved from https://deprem.afad.gov.tr/depremkatalogu
  • Arruda, E. M. (1993). A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2), 389-412. Retrieved from http://dx.doi.org/10.1016/0022-5096(93)90013-6
  • Barroso, A. E. (2012). Biaxial testing of composites in uniaxial machines: manufacturing of a device, analysis of the specimen geometry and preliminary experimental results. 15th European Conference on Composite Materials: Composites at Venice, ECCM., 2012.
  • Crocker, L. E. (1999). Hyperelastic modelling of flexible adhesives.
  • EKŞİ, K. (2019). Investigate Elastomeric Bearings Under Fatigue Loading. Master Thesis, Yildiz Technical University.
  • Fragnet, M. (2013). Elastomers and Rubbers used in Civil Engineering. Organic Materials for Sustainable Construction.
  • Medellín, L. F. (2017). Design of a biaxial test module for uniaxial testing machine. 4.8, 7911-7920.
  • Miler, K. (2004). Testing elastomers for finite element analysis. Axel Products.
  • Mooney, M. (1940). A theory of large elastic deformation. Journal of applied physics, 11(9), 582-592. Retrieved from https://doi.org/10.1063/1.1712836
  • Ogden, R. W. (1972). Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 326(1567), 565-584. Retrieved from http://dx.doi.org/10.1098/
  • Rivlin, R. S. (1948). Large elastic deformations of isotropic materials. I. Fundamental concepts. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240(822), 459-490.
  • Shahzad, M. E. (2015). Mechanical characterization and FE modelling of a hyperelastic material. Materials Research 18.5, 918-924.
  • Sugihardjo, H. T. (2018). FE Model of Low Grade Rubber for Modeling Housing’s Low-Cost Rubber Base Isolators. Civil engineering journal, 24-45.
  • Yeoh, O. H. (1993). Some forms of the strain energy function for rubber. Rubber Chemistry and technology, 66(5), 754-771.
There are 16 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Fatih Alemdar 0000-0002-8752-0310

Faisal Ahmed 0000-0002-1799-2558

Early Pub Date July 29, 2021
Publication Date November 30, 2021
Published in Issue Year 2021 Issue: 27

Cite

APA Alemdar, F., & Ahmed, F. (2021). Validation of an elastomeric bearing characterized with finite element hyperelastic models. Avrupa Bilim Ve Teknoloji Dergisi(27), 471-478. https://doi.org/10.31590/ejosat.930964