Research Article
BibTex RIS Cite

Kontaktörlerde Anahtarlama Sayısının Elektrik Ark Erozyonuna ve Kontaktör Yüzey Hasarlarına Etkileri

Year 2021, Issue: 27, 722 - 734, 30.11.2021
https://doi.org/10.31590/ejosat.946690

Abstract

Elektrik ark erozyonu, elektriksel devrelerin anahtarlama görevi yapan elemanlarında ortaya çıkabilen önemli hasar türlerinden bir tanesidir. Hassas elektrik devrelerinin kararlı bir çalışma gerçekleştirebilmesi için, ark erozyonuna bağlı yüzey hasarlarının mümkün olduğunca az olması istenir. Ark erozyonu, kontaktör servis ömrünü kısaltıcı etkilere yol açar. Kontaktör ömrünü uzatabilmek için yapılan çalışmalar ark erozyonu miktarını azaltmak veya ark şiddetini düşürmek üzerine yoğunlaşmıştır. Ark erozyonunun gerçekleşme karakteristiği, farklı disiplinlerin çalışma alanı olan birbirinden bağımsız birçok etken tarafından belirlenmektedir. Bu çalışmada mekanik, metalurjik ve elektrik olmak üzere farklı disiplinlerden hibrit bir araştırma yöntemiyle, Ag-Ni kontaktörlerin 12VDC 5A yük altında rezistif bir devrede farklı çevrimler sayılarında gözlemlenen deformasyonları incelenmiştir. Deneysel verilerden elde edilen sonuçlar literatürdeki çalışmalarla karşılaştırmalı olarak değerlendirilmiş; mekanik, metalurjik ve elektriksel parametrelerin elektrik ark erozyonuyla beraber kontaktör yüzeylerinde ortaya çıkardığı pürüzlülük mekanizmaları ortaya konulmuştur.

References

  • Abbaoui, M., Lefort, A., Sallais, D., & Jemaa, N. B. (2006). Theoretical and experimental determination of erosion rate due to arcing in electrical contacts. Electrical Contacts - 2006. Proceedings of the 52nd IEEE Holm Conference on Electrical Contacts, 103–109. https://doi.org/10.1109/HOLM.2006.284072
  • Bıyık, S. (2015). TiO2 Takviyesi İçeren AgSnO2 Esaslı Elektrik Kontak Malzemelerinin Toz Metalurjisi Yöntemiyle Üretimi ve Ark-Erozyon Davranışlarının İncelenmesi. In Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı.
  • Cui, X., Zhou, X., Zhai, G., & Peng, X. (2016). Evaporation Erosion during the Relay Contact Breaking Process Based on a Simplified Arc Model. Plasma Science and Technology, 18(5), 512–519. https://doi.org/10.1088/1009-0630/18/5/12
  • Hu, P., Hu, B. L., Wang, K. S., Yang, F., Song, R., Yu, Z. T., Wang, Q., Cao, W. C., Liu, D. X., An, G., Guo, L., & Yu, H. (2016). Arc erosion behavior of La-doping titanium-zirconium-molybdenum alloy. Journal of Alloys and Compounds, 685(3), 465–470. https://doi.org/10.1016/j.jallcom.2016.05.328
  • Hwang, S., Hwang, D., Baek, H., & Shin, C. (2020). Effect of Copper-Based Spring Alloy Selection on Arc Erosion of Electrical Contacts in a Miniature Electrical Switch. Metals and Materials International, 0123456789. https://doi.org/10.1007/s12540-019-00602-x
  • Jemaa, N. Ben, Morin, L., Benhenda, S., & Nedelec, L. (1998). Anodic to cathodic arc transition according to break arc lengthening. IEEE Transactions on Components, Packaging, and Manufacturing Technology. Part A, 21(4), 599–602. https://doi.org/10.1109/95.740051
  • Jing, W., Jianwen, W., & Liying, Z. (2011). Arc behavior of intermediate-frequency vacuum arc on axial magnetic field contacts. IEEE Transactions on Plasma Science, 39(6 PART 1), 1336–1343. https://doi.org/10.1109/TPS.2011.2119496
  • Kharin, S. N., Nouri, H., & Miedzinsky, B. (2015). A comparative study of arc erosion at frequencies ranging 50-1000 Hz. Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts, 2015-Febru(February). https://doi.org/10.1109/HOLM.2014.7031048
  • Lin, Z., Fan, S., Liu, M., Liu, S., Li, J. G., Li, J., Xie, M., Chen, J., & Sun, X. (2019). Excellent anti-arc erosion performance and corresponding mechanisms of a nickel-belt-reinforced silver-based electrical contact material. Journal of Alloys and Compounds, 788, 163–171. https://doi.org/10.1016/j.jallcom.2019.02.085
  • Liying, Z., Jianwen, W., & Xueming, Z. (2013). Arc movement of intermediate-frequency vacuum Arc on TMF contacts. IEEE Transactions on Power Delivery, 28(4), 2014–2021. https://doi.org/10.1109/TPWRD.2013.2272590
  • Murzakaev, A. M. (2016). Erosion rate in a vacuum arc and in a gas arc at threshold currents. Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2016-Novem. https://doi.org/10.1109/DEIV.2016.7748757
  • Mützel, T., & Niederreuther, R. (2012). Contact material combinations for high performance switching devices. Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts, 179–184. https://doi.org/10.1109/HOLM.2012.6336602
  • Rong, M., Ma, Q., Wu, Y., Xu, T., & Murphy, A. B. (2009). The influence of electrode erosion on the air arc in a low-voltage circuit breaker. Journal of Applied Physics, 106(2). https://doi.org/10.1063/1.3176983
  • Swingler, J., & McBride John W., J. W. (2008). Micro-arcing and arc erosion minimization using a DC hybrid switching device. IEEE Transactions on Components and Packaging Technologies, 31(2 SPEC. ISS.), 425–430. https://doi.org/10.1109/TCAPT.2008.921640
  • Tian, Y., Wang, Z., Jiang, Y., Ma, H., Liu, Z., Geng, Y., & Wang, J. (2016). Simulation of surface erosion of anode under high-current vacuum arcs. Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2016-Novem, 3–6. https://doi.org/10.1109/DEIV.2016.7748744
  • Wu, C., Yi, D., Weng, W., Li, S., Zhou, J., & Zheng, F. (2015). Arc erosion behavior of Ag/Ni electrical contact materials. Materials and Design, 85, 511–519. https://doi.org/10.1016/j.matdes.2015.06.142
  • Zhou, X., Heberlein, J., & Pfender, E. (1994). Theoretical study of factors influencing arc erosion of cathode. Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts, 1994-march(1), 107–112. https://doi.org/10.1109/HOLM.1992.246932
  • Zhou, Xue, Cui, X., Chen, M., & Zhai, G. (2015). Evaporation Erosion of Contacts under Static Arc by Gas Dynamics and Molten Pool Simulation. IEEE Transactions on Plasma Science, 43(12), 4149–4160. https://doi.org/10.1109/TPS.2015.2497720
  • Zhu, S., Liu, Y., Tian, B., Zhang, Y., & Song, K. (2017). Arc erosion behavior and mechanism of Cu/Cr20 electrical contact material. Vacuum, 143, 129–137. https://doi.org/10.1016/j.vacuum.2017.06.002

The Effects of the Number of Switching in Contactors on Electric Arc Erosion and Contactor Surface Damages

Year 2021, Issue: 27, 722 - 734, 30.11.2021
https://doi.org/10.31590/ejosat.946690

Abstract

Electric arc erosion is one of the important types of damage that can occur in the switching elements of electrical circuits. In order for sensitive electrical circuits to perform stable operation, surface damage due to arc erosion is desired to be as little as possible. Arc erosion leads to effects that shorten the contactor service life. Studies conducted to extend the lifetime of the contactor have focused on reducing the amount of arc erosion or decreasing the arc intensity. The occurrence characteristic of arc erosion is determined by many independent factors that are the field of study of different disciplines. In this study, the deformations of Ag-Ni contactors in a resistive circuit under 12VDC 5A load at different number of cycles were investigated using a hybrid research method from different disciplines including mechanical, metallurgical and electrical. The results obtained from the experimental data were evaluated in comparison with the studies in the literature; Roughness mechanisms caused by mechanical, metallurgical and electrical parameters along with electric arc erosion on contactor surfaces have been revealed.

References

  • Abbaoui, M., Lefort, A., Sallais, D., & Jemaa, N. B. (2006). Theoretical and experimental determination of erosion rate due to arcing in electrical contacts. Electrical Contacts - 2006. Proceedings of the 52nd IEEE Holm Conference on Electrical Contacts, 103–109. https://doi.org/10.1109/HOLM.2006.284072
  • Bıyık, S. (2015). TiO2 Takviyesi İçeren AgSnO2 Esaslı Elektrik Kontak Malzemelerinin Toz Metalurjisi Yöntemiyle Üretimi ve Ark-Erozyon Davranışlarının İncelenmesi. In Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı.
  • Cui, X., Zhou, X., Zhai, G., & Peng, X. (2016). Evaporation Erosion during the Relay Contact Breaking Process Based on a Simplified Arc Model. Plasma Science and Technology, 18(5), 512–519. https://doi.org/10.1088/1009-0630/18/5/12
  • Hu, P., Hu, B. L., Wang, K. S., Yang, F., Song, R., Yu, Z. T., Wang, Q., Cao, W. C., Liu, D. X., An, G., Guo, L., & Yu, H. (2016). Arc erosion behavior of La-doping titanium-zirconium-molybdenum alloy. Journal of Alloys and Compounds, 685(3), 465–470. https://doi.org/10.1016/j.jallcom.2016.05.328
  • Hwang, S., Hwang, D., Baek, H., & Shin, C. (2020). Effect of Copper-Based Spring Alloy Selection on Arc Erosion of Electrical Contacts in a Miniature Electrical Switch. Metals and Materials International, 0123456789. https://doi.org/10.1007/s12540-019-00602-x
  • Jemaa, N. Ben, Morin, L., Benhenda, S., & Nedelec, L. (1998). Anodic to cathodic arc transition according to break arc lengthening. IEEE Transactions on Components, Packaging, and Manufacturing Technology. Part A, 21(4), 599–602. https://doi.org/10.1109/95.740051
  • Jing, W., Jianwen, W., & Liying, Z. (2011). Arc behavior of intermediate-frequency vacuum arc on axial magnetic field contacts. IEEE Transactions on Plasma Science, 39(6 PART 1), 1336–1343. https://doi.org/10.1109/TPS.2011.2119496
  • Kharin, S. N., Nouri, H., & Miedzinsky, B. (2015). A comparative study of arc erosion at frequencies ranging 50-1000 Hz. Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts, 2015-Febru(February). https://doi.org/10.1109/HOLM.2014.7031048
  • Lin, Z., Fan, S., Liu, M., Liu, S., Li, J. G., Li, J., Xie, M., Chen, J., & Sun, X. (2019). Excellent anti-arc erosion performance and corresponding mechanisms of a nickel-belt-reinforced silver-based electrical contact material. Journal of Alloys and Compounds, 788, 163–171. https://doi.org/10.1016/j.jallcom.2019.02.085
  • Liying, Z., Jianwen, W., & Xueming, Z. (2013). Arc movement of intermediate-frequency vacuum Arc on TMF contacts. IEEE Transactions on Power Delivery, 28(4), 2014–2021. https://doi.org/10.1109/TPWRD.2013.2272590
  • Murzakaev, A. M. (2016). Erosion rate in a vacuum arc and in a gas arc at threshold currents. Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2016-Novem. https://doi.org/10.1109/DEIV.2016.7748757
  • Mützel, T., & Niederreuther, R. (2012). Contact material combinations for high performance switching devices. Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts, 179–184. https://doi.org/10.1109/HOLM.2012.6336602
  • Rong, M., Ma, Q., Wu, Y., Xu, T., & Murphy, A. B. (2009). The influence of electrode erosion on the air arc in a low-voltage circuit breaker. Journal of Applied Physics, 106(2). https://doi.org/10.1063/1.3176983
  • Swingler, J., & McBride John W., J. W. (2008). Micro-arcing and arc erosion minimization using a DC hybrid switching device. IEEE Transactions on Components and Packaging Technologies, 31(2 SPEC. ISS.), 425–430. https://doi.org/10.1109/TCAPT.2008.921640
  • Tian, Y., Wang, Z., Jiang, Y., Ma, H., Liu, Z., Geng, Y., & Wang, J. (2016). Simulation of surface erosion of anode under high-current vacuum arcs. Proceedings - International Symposium on Discharges and Electrical Insulation in Vacuum, ISDEIV, 2016-Novem, 3–6. https://doi.org/10.1109/DEIV.2016.7748744
  • Wu, C., Yi, D., Weng, W., Li, S., Zhou, J., & Zheng, F. (2015). Arc erosion behavior of Ag/Ni electrical contact materials. Materials and Design, 85, 511–519. https://doi.org/10.1016/j.matdes.2015.06.142
  • Zhou, X., Heberlein, J., & Pfender, E. (1994). Theoretical study of factors influencing arc erosion of cathode. Electrical Contacts, Proceedings of the Annual Holm Conference on Electrical Contacts, 1994-march(1), 107–112. https://doi.org/10.1109/HOLM.1992.246932
  • Zhou, Xue, Cui, X., Chen, M., & Zhai, G. (2015). Evaporation Erosion of Contacts under Static Arc by Gas Dynamics and Molten Pool Simulation. IEEE Transactions on Plasma Science, 43(12), 4149–4160. https://doi.org/10.1109/TPS.2015.2497720
  • Zhu, S., Liu, Y., Tian, B., Zhang, Y., & Song, K. (2017). Arc erosion behavior and mechanism of Cu/Cr20 electrical contact material. Vacuum, 143, 129–137. https://doi.org/10.1016/j.vacuum.2017.06.002
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Nuri Sav 0000-0002-4495-5883

Sinan Fidan 0000-0003-4385-4981

Satılmış Ürgün 0000-0003-3889-6909

Early Pub Date July 29, 2021
Publication Date November 30, 2021
Published in Issue Year 2021 Issue: 27

Cite

APA Sav, M. N., Fidan, S., & Ürgün, S. (2021). Kontaktörlerde Anahtarlama Sayısının Elektrik Ark Erozyonuna ve Kontaktör Yüzey Hasarlarına Etkileri. Avrupa Bilim Ve Teknoloji Dergisi(27), 722-734. https://doi.org/10.31590/ejosat.946690