Review
BibTex RIS Cite

Strigolactones; New Member of Plant Hormones Class

Year 2021, Issue: 27, 735 - 746, 30.11.2021
https://doi.org/10.31590/ejosat.947571

Abstract

Strigolactones (SL) have been investigated for many years due to their activation of seed germination of parasitic plants such as Striga (witch grass), Orobanche (broomrapes) and their positive effect on branching in arbuscular mycorrhizal fungi. It was included in the herbal hormones class in 2008 due to its effect on regulating the necessary response to various biotic and abiotic stresses such as lack of nutrients in the soil, especially phosphate, drought, salinity, temperature, light and pathogens, and the physiological functions of the plant in adapting to stress. Strigolactones, a carotenoid derivative, play an active role in inhibiting shoot branching against stress, stimulating various plant development stages such as seed germination, root architecture, and optimizing plant growth and development. In this article, the structure of strigolactones, their biosynthesis, physiological responses to stress and their interaction with other plant hormones and plant growth regulators are summarized.

References

  • Akeel, A., Khan, M. M. A., Jaleel, H., & Uddin, M. (2019). Smoke-saturated Water and Karrikinolide Modulate Germination, Growth, Photosynthesis and Nutritional Values of Carrot (Daucus carota L.). Journal of Plant Growth Regulation, 38(4), 1387-1401.
  • Akiyama, K., & Hayashi, H. (2006). Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Annals of botany, 97(6), 925-931. doi:10.1093/aob/mcl063
  • Agusti, J., Herold, S., Schwarz, M., Sanchez, P., Ljung, K., Dun, E. A., ... & Greb, T. (2011). Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences, 108(50), 20242-20247.
  • Aroca, R., Ruiz-Lozano, J. M., Zamarreño, Á. M., Paz, J. A., García-Mina, J. M., Pozo, M. J., & López-Ráez, J. A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of plant physiology, 170(1), 47-55.
  • Awad, A. A., Sato, D., Kusumoto, D., Kamioka, H., Takeuchi, Y., & Yoneyama, K. (2006). Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regulation, 48(3),221.
  • Azooz, M. M., Youssef, A. M., & Ahmad, P. (2011). Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. International Journal of Plant Physiology and Biochemistry, 3(14), 253-264.
  • Banerjee, A., & Roychoudhury, A. (2018). Strigolactones: multi-level regulation of biosynthesis and diverse responses in plant abiotic stresses. Acta physiologiae plantarum, 40(5), 1-10.
  • Bartoli, C. G., Casalongué, C. A., Simontacchi, M., Marquez-Garcia, B., & Foyer, C. H. (2013). Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environmental and Experimental Botany, 94, 73-88.
  • Bensmihen, S. (2015). Hormonal control of lateral root and nodule development in legumes. Plants, 4(3), 523-547.
  • Beveridge, C. A., & Kyozuka, J. (2010). New genes in the strigolactone-related shoot branching pathway. Current opinion in plant biology, 13(1), 34-39.
  • Bhatt, M. D., & Bhatt, D. (2020). Strigolactones in Overcoming Environmental Stresses. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives, 327.
  • Bidabadi, S. S., & Sharifi, P. (2020). Strigolactone and Methyl Jasmonate-Induced Antioxidant Defense and the Composition Alterations of Different Active Compounds in Dracocephalum kotschyi Boiss Under Drought Stress. Journal of Plant Growth Regulatıon.
  • Borghi, L., Liu, G. W., Emonet, A., Kretzschmar, T., & Martinoia, E. (2016). The importance of strigolactone transport regulation for symbiotic signaling and shoot branching. Planta, 243(6), 1351-1360.
  • Bouwmeester, H. J., Fonne‐Pfister, R., Screpanti, C., & De Mesmaeker, A. (2019). Strigolactones: plant hormones with promising features. Angewandte Chemie International Edition, 58(37), 12778-12786.
  • Brewer, P. B., Dun, E. A., Ferguson, B. J., Rameau, C., & Beveridge, C. A. (2009). Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant physiology, 150(1), 482-493.
  • Brewer, P. B., Koltai, H., & Beveridge, C. A. (2013). Diverse roles of strigolactones in plant development. Molecular plant, 6(1), 18-28.
  • Butler, L. G., in Insights into Allelopathy, ACS Symposium Series (Eds.: K. Inderjit, F. A. Einhellig), ACS Books, Washington, 1995, pp. 158–168.
  • Bürger, M., & Chory, J. (2020). The many models of strigolactone signaling. Trends in Plant Science, 25(4), 395-405.
  • Cardinale, F., Korwin Krukowski, P., Schubert, A., & Visentin, I. (2018). Strigolactones: mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. Journal of experimental botany, 69(9), 2291-2303.
  • Ćavar, S., Zwanenburg, B., & Tarkowski, P. (2015). Strigolactones: occurrence, structure, and biological activity in the rhizosphere. Phytochemistry Reviews, 14(4), 691-711.
  • Charnikhova, T. V., Gaus, K., Lumbroso, A., Sanders, M., Vincken, J. P., De Mesmaeker, A., ... & Bouwmeester, H. J. (2017). Zealactones. Novel natural strigolactones from maize. Phytochemistry, 137, 123-131.
  • Charnikhova, T. V., Gaus, K., Lumbroso, A., Sanders, M., Vincken, J. P., De Mesmaeker, A., & Bouwmeester, H. J. (2018). Zeapyranolactone− A novel strigolactone from maize. Phytochemistry Letters, 24, 172-178.
  • Chavoushi, M., Najafi, F., Salimi, A., & Angaji, S. A. (2019). Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Industrial Crops and Products, 134, 168-176.
  • Cheng, X., Ruyter-Spira, C., & Bouwmeester, H. (2013). The interaction between strigolactones and other plant hormones in the regulation of plant development. Frontiers in Plant Science, 4,199.
  • Cook, C. E., Whichard, L. P., Turner, B., Wall, M. E., & Egley, G. H. (1966). Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 154(3753), 1189-1190.
  • Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) J Am Chem Soc 94:6198–6199.
  • Crawford, S., Shinohara, N., Sieberer, T., Williamson, L., George, G., Hepworth, J., ... & Leyser, O. (2010). Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 137(17), 2905-2913.
  • Daws, M. I., Davies, J., Pritchard, H. W., Brown, N. A., & Van Staden, J. (2007). Butenolidefrom plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regulation, 51(1), 73-82.
  • de Saint Germain, A., Ligerot, Y., Dun, E. A., Pillot, J. P., Ross, J. J., Beveridge, C. A., & Rameau, C. (2013). Strigolactones stimulate internode elongation independently of gibberellins. Plant physiology, 163(2), 1012-1025.
  • Du, H., Huang, F., Wu, N., Li, X., Hu, H., & Xiong, L. (2018). Integrative regulation of drought escape through ABA-dependent and-independent pathways in rice. Molecular plant, 11(4), 584- 597.
  • Dun, E. A., Brewer, P. B., & Beveridge, C. A. (2009). Strigolactones: discovery of the elusive shoot branching hormone. Trends in plant science, 14(7), 364-372. Dun, E. A., de Saint Germain, A., Rameau, C., & Beveridge, C. A. (2012). Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant physiology, 158(1), 487-498.
  • El Tayeb, M. A., & Ahmed, N. L. (2010). Response of wheat cultivars to drought and salicylic acid. American-Eurasian Journal of Agronomy, 3(1), 1-7. Emamverdian, A., Ding, Y., & Xie, Y. (2020). The Role of New Members of Phytohormones in Plant Amelioration under Abiotic Stress with an Emphasis on Heavy Metals. Polish Journal of Environmental Studies, 29(2).
  • Ferrero, M., Pagliarani, C., Novák, O., Ferrandino, A., Cardinale, F., Visentin, I., & Schubert, A. (2018). Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries. Journal of experimental botany, 69(9), 2391-2401.
  • Faizan, M., Faraz, A., Sami, F., Siddiqui, H., Yusuf, M., Gruszka, D., & Hayat, S. (2020). Role of strigolactones: Signalling and crosstalk with other phytohormones. Open Life Sciences, 15(1),217-228.
  • Ferguson, B. J., & Beveridge, C. A. (2009). Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant physiology, 149(4), 1929-1944. Foo, E., Yoneyama, K., Hugill, C., Quittenden, L. J., & Reid, J. B. (2013). Strigolactones: internal and external signals in plant symbioses?. Plant signaling & behavior, 8(3), e23168.
  • Foo, E., Ferguson, B. J., & Reid, J. B. (2014). The potential roles of strigolactones and brassinosteroids in the autoregulation of nodulation pathway. Annals of Botany, 113(6), 1037- 1045.
  • Gomez-Roldan, V., Roux, C., Girard, D., Bécard, G., & Puech, V. (2007). Strigolactones: promising plant signals. Plant signaling & behavior, 2(3), 163-164.
  • Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun, E. A., Pillot, J. P., ... & Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature, 455(7210), 189-194.
  • Haider, I., Andreo-Jimenez, B., Bruno, M., Bimbo, A., Floková, K., Abuauf, H., ... & Bouwmeester, H. J. (2018). The interaction of strigolactones with abscisic acid during the drought response in rice. Journal of experimental botany, 69(9), 2403-2414.
  • Hernández-Ruiz, J., & Arnao, M. B. (2018). Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy, 8(4), 33.
  • Ito, S., Umehara, M., Hanada, A., Yamaguchi, S., & Asami, T. (2013). Effects of strigolactone biosynthesis inhibitor TIS108 on Arabidopsis. Plant signaling & behavior, 8(5), e24193.
  • Ito, S., Nozoye, T., Sasaki, E., Imai, M., Shiwa, Y., Shibata-Hatta, M., ... & Nishizawa, N. K. (2015). Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis. PLoS One, 10(3), e0119724.
  • Ioio, R. D., Nakamura, K., Moubayidin, L., Perilli, S., Taniguchi, M., Morita, M. T., ... & Sabatini, S. (2008). A genetic framework for the control of cell division and differentiation in the root meristem. Science, 322(5906), 1380-1384.
  • Janssen, B. J., & Snowden, K. C. (2012). Strigolactone and karrikin signal perception:receptors, enzymes, or both?. Frontiers in plant science, 3, 296.
  • Jamil, M., Van Mourik, T. A., Charnikhova, T., & Bouwmeester, H. J. (2013). Effect of diammonium phosphate application on strigolactone production and Striga hermonthica infection in three sorghum cultivars. Weed Research, 53(2), 121-130.
  • Jia, K. P., Luo, Q., He, S. B., Lu, X. D., & Yang, H. Q. (2014). Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Molecular Plant, 7(3), 528-540.
  • Jia, K. P., Li, C., Bouwmeester, H. J., & Al-Babili, S. (2019). Strigolactone biosynthesis and signal transduction. In Strigolactones-Biology and Applications (pp. 1-45). Springer, Cham.
  • Jiang, L., Matthys, C., Marquez-Garcia, B., De Cuyper, C., Smet, L., De Keyser, A., ... & Goormachtig, S. (2016). Strigolactones spatially influence lateral root development through the cytokinin signaling network. Journal of experimental botany, 67(1), 379-389.
  • Joshi, N., Nautiyal, P., & Papnai, G. (2019). Unravelling diverse roles of strigolactones in stimulating plant growth and alleviating various stress conditions: A review. J Pharmaco Phytochem, 8(5), 396-404.
  • Kapulnik, Y., Resnick, N., Mayzlish-Gati, E., Kaplan, Y., Wininger, S., Hershenhorn, J., & Koltai, H. (2011). Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. Journal of experimental botany, 62(8), 2915-2924.
  • Kapulnik, Y., & Koltai, H. (2014). Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant physiology, 166(2), 560-569.
  • Khan, M. I. R., Iqbal, N., Masood, A., Per, T. S., & Khan, N. A. (2013). Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling & Behavior, 8(11), e26374.
  • Kim, H. I., Kisugi, T., Khetkam, P., Xie, X., Yoneyama, K., Uchida, K., ... & Yoneyama, K. (2014). Avenaol, a germination stimulant for root parasitic plants from Avena strigosa. Phytochemistry, 103, 85-88.
  • Koltai, H., Dor, E., Hershenhorn, J., Joel, D. M., Weininger, S., Lekalla, S., ... & Barg, R. (2010). Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. Journal of Plant Growth Regulation, 29(2), 129-136.
  • Koltai, H., & Beveridge, C. A. (2013). Strigolactones and the coordinated development of shoot and root. In Long-Distance Systemic Signaling and Communication in Plants (pp. 189-204). Springer, Berlin, Heidelberg.
  • Koltai, H., & Kapulnik, Y. (2011). Strigolactones as mediators of plant growth responses to environmental conditions. Plant signaling & behavior, 6(1), 37-41. Koltai, H. (2013). Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions. Annals of Botany, 112(2), 409-415.
  • Koltai, H. (2015). Cellular events of strigolactone signalling and their crosstalk with auxin in roots. Journal of experimental botany, 66(16), 4855-4861.
  • Koren, D., Resnick, N., Gati, E. M., Belausov, E., Weininger, S., Kapulnik, Y., & Koltai, H. (2013). Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity. New Phytologist, 198(3), 866-874.
  • Lechat, M. M., Brun, G., Montiel, G., Véronési, C., Simier, P., Thoiron, S., ... & Delavault, P. (2015). Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel. Journal of experimental botany, 66(11), 3129-3140.
  • Li, W., Gupta, A., Tian, H., Nguyen, K. H., Tran, C. D., Watanabe, Y., ... & Luo, Y. (2020). Different strategies of strigolactone and karrikin signals in regulating the resistance of Arabidopsis thaliana to water-deficit stress. Plant Signaling & Behavior, 15(9), 1789321.
  • Lopez-Obando, M., Ligerot, Y., Bonhomme, S., Boyer, F. D., & Rameau, C. (2015). Strigolactone biosynthesis and signaling in plant development. Development, 142(21), 3615-3619.
  • López‐Ráez, J. A., Kohlen, W., Charnikhova, T., Mulder, P., Undas, A. K., Sergeant, M. J., ... & Bouwmeester, H. (2010). Does abscisic acid affect strigolactone biosynthesis?. New Phytologist, 187(2), 343-354.
  • Manandhar, S., Funnell, K. A., Woolley, D. J., & Cooney, J. M. (2018). Interaction between strigolactone and cytokinin on axillary and adventitious bud development in Zantedeschia. J Plant Physiol Pathol 6, 1, 2.
  • Marzec, M. (2016a). Perception and signaling of strigolactones. Frontiers in Plant Science, 7, 1260.
  • Marzec, M. (2016b). Strigolactones as part of the plant defence system. Trends Plant Sci. 16,30121–30122. doi: 10.1016/j.tplants.2016.08.010
  • Marzec, M. (2017). Strigolactones and gibberellins: a new couple in the phytohormone world?. Trends in plant science, 22(10), 813-815.
  • Mashiguchi, K., Sasaki, E., Shimada, Y., Nagae, M., Ueno, K., Nakano, T., ... & Asami, T. (2009). Feedback-regulation of strigolactone biosynthetic genes and strigolactone- regulated genes in Arabidopsis. Bioscience, Biotechnology, and Biochemistry, 73(11), 2460-2465.
  • Matusova, R., Rani, K., Verstappen, F. W., Franssen, M. C., Beale, M. H., & Bouwmeester, H. J. (2005). The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant physiology, 139(2), 920-934.
  • Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., ... & Fang, Y. (2019). Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant physiology and biochemistry, 135, 99-110.
  • Mishra, S., Upadhyay, S., & Shukla, R. K. (2017). The role of strigolactones and their potential cross-talk under hostile ecological conditions in plants. Frontiers in physiology, 7, 691.
  • Mori, K., Matsui, J., Yokota, T., Sakai, H., Bando, M., & Takeuchi, Y. (1999). Structure and synthesis of orobanchol, the germination stimulant for Orobanche minor. Tetrahedron letters, 40(5), 943-946.
  • Mostofa, M. G., Li, W., Nguyen, K. H., Fujita, M., & Tran, L. S. P. (2018). Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Plant, cell & environment, 41(10), 2227-2243.
  • MousaviNik, M., Jowkar, A., & RahimianBoogar, A. (2016). Positive effects of karrikin on seed germination of three medicinal herbs under drought stress. Iran Agricultural Research, 35(2), 57-64.
  • Nakamura, H., & Asami, T. (2014). Target sites for chemical regulation of strigolactone signaling. Frontiers in plant science, 5, 623.
  • Nasir, F., Tian, L., Shi, S., Chang, C., Ma, L., Gao, Y., & Tian, C. (2019). Strigolactones positively regulate defense against Magnaporthe oryzae in rice (Oryza sativa). Plant Physiology and Biochemistry, 142, 106-116.
  • Nasir, F., Li, W., Tran, L. S. P., & Tian, C. (2020). Does Karrikin Signaling Shape the Rhizomicrobiome via the Strigolactone Biosynthetic Pathway?. Trends in Plant Science, 25(12), 1184-1187.
  • Nelson, D. C., Scaffidi, A., Dun, E. A., Waters, M. T., Flematti, G. R., Dixon, K. W., ... & Smith, S. M. (2011). F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 108(21), 8897-8902.
  • Omoarelojie, L. O., Kulkarni, M. G., Finnie, J. F., & Van Staden, J. (2019). Strigolactones and their crosstalk with other phytohormones. Annals of botany, 124(5), 749-767.
  • Özel, Ş. G. (2018). Strigolakton Uygulamasıyla Tuz Stresine Karşı Kum Zambağı Bitkisinin Toleransının Arttırılmasında Antioksidan Enzimlerin İşlevi. Tekirdağ Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 104 sayfa, Tekirdağ.
  • Özbilen, A (2019). Zeytinde (Olea europaea L.) Strigolakton Biyosentezinde Rol Alan Genlerin Karakterizasyonu. Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 203 sayfa, Çanakkale.
  • Peres, A. L. G., Soares, J. S., Tavares, R. G., Righetto, G., Zullo, M. A., Mandava, N. B., & Menossi, M. (2019). Brassinosteroids, the sixth class of phytohormones: a molecular view from the discovery to hormonal interactions in plant development and stress adaptation. International Journal of Molecular Sciences, 20(2), 331.
  • Pozo, M. J., López‐Ráez, J. A., Azcón‐Aguilar, C., & García‐Garrido, J. M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 205(4), 1431-1436.
  • Rameau, C., Goormachtig, S., Cardinale, F., Bennett, T., & Cubas, P. (2019). Strigolactones as plant hormones. In Strigolactones-Biology and Applications (pp. 47-87). Springer, Cham.
  • Rasmussen, A., Hu, Y., Depaepe, T., Vandenbussche, F., Boyer, F. D., Van Der Straeten, D., & Geelen, D. (2017). Ethylene controls adventitious root initiation sites in Arabidopsis hypocotyls independently of strigolactones. Journal of Plant Growth Regulation, 36(4),897- 911.
  • Ren, C. G., Kong, C. C., & Xie, Z. H. (2018). Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC plant biology, 18(1), 1-10.
  • Rozpądek, P., Domka, A. M., Nosek, M., Ważny, R., Jędrzejczyk, R. J., Wiciarz, M., & Turnau, K. (2018). The role of strigolactone in the cross-talk between Arabidopsis thaliana and the endophytic fungus Mucor sp. Frontiers in microbiology, 9, 441.
  • Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter, N., ... & Verstappen, F. (2011). Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?. Plant physiology, 155(2), 721-734.
  • Scaffidi, A., Waters, M. T., Ghisalberti, E. L., Dixon, K. W., Flematti, G. R., & Smith, S. M. (2013). Carlactone‐independent seedling morphogenesis in Arabidopsis. The Plant Journal, 76(1), 1-9.
  • Scaffidi, A., Waters, M. T., Sun, Y. K., Skelton, B. W., Dixon, K. W., Ghisalberti, E. L., ... & Smith, S. M. (2014). Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiology, 165(3), 1221-1232.
  • Sedaghat, M., Tahmasebi-Sarvestani, Z., Emam, Y., & Mokhtassi-Bidgoli, A. (2017). Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiology and Biochemistry, 119, 59-69.
  • Sedaghat, M., Sarvestani, Z. T., Emam, Y., Bidgoli, A. M., & Sorooshzadeh, A. (2020). Foliar- Applied GR24 and Salicylic Acid Enhanced Wheat Drought Tolerance. Russian Journal of Plant Physiology, 67(4), 733-739.
  • Seto, Y., Kameoka, H., Yamaguchi, S., & Kyozuka, J. (2012). Recent advances in strigolactone research: chemical and biological aspects. Plant and Cell Physiology, 53(11), 1843-1853.
  • Singh, B., & Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39(2), 137-141.
  • Smith, S. M. (2014). Q&A: What are strigolactones and why are they important to plants and soil microbes?. BMC biology, 12(1), 1-7.
  • Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J. P., & Vierheilig, H. (2007). Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules, 12(7), 1290-1306.
  • Sugimoto, Y., Ali, A. M., Yabuta, S., Kinoshita, H., Inanaga, S., & Itai, A. (2003). Germination strategy of Striga hermonthica involves regulation of ethylene biosynthesis. Physiologia Plantarum, 119(1), 137-145.
  • Sun, H., Tao, J., Liu, S., Huang, S., Chen, S., Xie, X., ... & Xu, G. (2014). Strigolactones are involved in phosphate-and nitrate-deficiency-induced root development and auxin transport in rice. Journal of Experimental Botany, 65(22), 6735-6746.
  • Swarbreck, S. M., Guerringue, Y., Matthus, E., Jamieson, F. J., & Davies, J. M. (2019). Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana. The Plant Journal, 98(4), 607-621.
  • Toh, S., Kamiya, Y., Kawakami, N., Nambara, E., McCourt, P., & Tsuchiya, Y. (2012). Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant and Cell Physiology, 53(1), 107-117.
  • Torres‐Vera, R., García, J. M., Pozo, M. J., & López‐Ráez, J. A. (2014). Do strigolactones contribute to plant defence?. Molecular Plant Pathology, 15(2), 211-216. doi: 10.1111/mpp.12074.
  • Tsuchiya, Y., Vidaurre, D., Toh, S., Hanada, A., Nambara, E., Kamiya, Y., ... & McCourt, P. (2010). A small-molecule screen identifies new functions for the plant hormone strigolactone. Nature chemical biology, 6(10), 741-749. doi: 10.1038/nchembio.435
  • Ueda, H., & Kusaba, M. (2015). Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiology, 169(1), 138-147.
  • Ueno, K., Furumoto, T., Umeda, S., Mizutani, M., Takikawa, H., Batchvarova, R., & Sugimoto, Y. (2014). Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry, 108, 122-128.
  • Umehara, M., Hanada, A., Magome, H., Takeda-Kamiya, N. & Yamaguchi, S. (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol. 51(7): 1118–1126.
  • Umehara, M., Cao, M., Akiyama, K., Akatsu, T., Seto, Y., Hanada, A., ... & Yamaguchi, S. (2015). Structural requirements of strigolactones for shoot branching inhibition in rice and Arabidopsis. Plant and Cell Physiology, 56(6), 1059-1072.
  • Van Ha, C., Leyva-González, M. A., Osakabe, Y., Tran, U. T., Nishiyama, R., Watanabe, Y., ... & Yamaguchi-Shinozaki, K. (2014). Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences, 111(2), 851-856.
  • Vaucher JP. 1823. M´emoire sur la germination des orobanches. M´em. Mus. Hist. Nat. Paris 10:261–73.
  • Villaécija-Aguilar, J. A., Hamon-Josse, M., Carbonnel, S., Kretschmar, A., Schmid, C., Dawid, C., ... & Gutjahr, C. (2019). SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS genetics, 15(8), e1008327.
  • Visentin, I., Vitali, M., Ferrero, M., Zhang, Y., Ruyter‐Spira, C., Novák, O., ... & Cardinale, F. (2016). Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytologist, 212(4), 954-963.
  • Vurro, M., Prandi, C., & Baroccio, F. (2016). Strigolactones: how far is their commercial use for agricultural purposes?. Pest management science, 72(11), 2026-2034.
  • Wallner, E. S., López-Salmerón, V., & Greb, T. (2016). Strigolactone versus gibberellin signaling: reemerging concepts?. Planta, 243(6), 1339-1350.
  • Wani, K. I., Zehra, A., Choudhary, S., Naeem, M., Khan, M. M. A., Castroverde, C. D. M., & Aftab, T. (2020). Mechanistic Insights into Strigolactone Biosynthesis, Signaling, and Regulation During Plant Growth and Development. Journal of Plant Growth Regulation, 1-17.
  • Wang, Q., Zhu, Z., Ozkardesh, K., & Lin, C. (2013). Phytochromes and phytohormones: the shrinking degree of separation. Molecular plant, 6(1), 5-7.
  • Wang, L., Waters, M. T., & Smith, S. M. (2018). Karrikin‐KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment. New Phytologist, 219(2), 605-618.
  • Waters, M. T., Nelson, D. C., Scaffidi, A., Flematti, G. R., Sun, Y. K., Dixon, K. W., & Smith, S. M. (2012). Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development, 139(7), 1285-1295.
  • Xie, X., Yoneyama, K., Kusumoto, D., Yamada, Y., Takeuchi, Y., Sugimoto, Y., & Yoneyama, K. (2008). Sorgomol, germination stimulant for root parasitic plants, produced by Sorghum bicolor. Tetrahedron Letters, 49(13), 2066-2068.
  • Xie, X., Yoneyama, K., & Yoneyama, K. (2010). The Strigolactone Story. Annual Review of Phytopathology, 48(1), 93-117. doi:10.1146/annurev-phyto- 073009-114453
  • Xie, X., Kisugi, T., Yoneyama, K., Nomura, T., Akiyama, K., Uchida, K., ... & Yoneyama, K. (2017). Methyl zealactonoate, a novel germination stimulant for root parasitic weeds produced by maize. Journal of Pesticide Science, 42(2), 58-61.
  • Xie, X., Mori, N., Yoneyama, K., Nomura, T., Uchida, K., Yoneyama, K., & Akiyama, K. (2019). Lotuslactone, a non-canonical strigolactone from Lotus japonicus. Phytochemistry, 157, 200-205.
  • Yamada, Y., Furusawa, S., Nagasaka, S., Shimomura, K., Yamaguchi, S., & Umehara, M. (2014). Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta, 240(2), 399-408.
  • Yamada, Y., & Umehara, M. (2015). Possible roles of strigolactones during leaf senescence. Plants, 4(3), 664-677.
  • Yao, J., & Waters, M. T. (2020). Perception of karrikins by plants: a continuing enigma. Journal of Experimental Botany, 71(6), 1774-1781.
  • Yasui, M., Ota, R., Tsukano, C., & Takemoto, Y. (2017). Total synthesis of avenaol. Nature communications, 8(1), 1-9.
  • Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y., Ogasawara, S., Akiyama, K., ... & Yoneyama, K. (2008). Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytologist, 179(2), 484-494.
  • Yoneyama, K., Awad, A. A., Xie, X., Yoneyama, K., & Takeuchi, Y. (2010). Strigolactones as germination stimulants for root parasitic plants. Plant and Cell Physiology, 51(7), 1095-1103.
  • Yoneyama, K., Arakawa, R., Ishimoto, K., Kim, H. I., Kisugi, T., Xie, X., ... & Yoneyama, K. (2015). Difference in striga‐susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytologist, 206(3), 983-989.
  • Yoneyama, K., Xie, X., Yoneyama, K., Kisugi, T., Nomura, T., Nakatani, Y., ... & McErlean, C. S. (2018). Which are the major players, canonical or non-canonical strigolactones?.Journal of experimental botany, 69(9), 2231-2239.
  • Yoneyama, K., Xie, X., Yoneyama, K., Nomura, T., Takahashi, I., Asami, T., ... & Nakashita, H. (2019). Regulation of biosynthesis, perception, and functions of strigolactones for promoting arbuscular mycorrhizal symbiosis and managing root parasitic weeds. Pest management science, 75(9), 2353-2359.
  • Yu, Y., Wang, J., Zhang, Z., Quan, R., Zhang, H., Deng, X. W., ... & Huang, R. (2013). Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. PLoS Genet, 9(12), e1004025.
  • Zhang, Y., Haider, I., Ruyter-Spira, C., & Bouwmeester, H. J. (2013). Strigolactone biosynthesis and biology. Molecular microbial ecology of the rhizosphere, 1, 355-371.
  • Zou, X., Wang, Q., Chen, P., Yin, C., & Lin, Y. (2019). Strigolactones regulate shoot elongation by mediating gibberellin metabolism and signaling in rice (Oryza sativa L.). Journal of plant physiology, 237, 72-79.
  • Zwanenburg, B., & Pospíšil, T. (2013). Structure and activity of strigolactones: new plant hormones with a rich future. Molecular plant, 6(1), 38-62.
  • Zwanenburg, B., Ćavar Zeljković, S., & Pospíšil, T. (2016a). Synthesis of strigolactones, a strategic account. Pest management science, 72(1), 15-29. Zwanenburg, B., Mwakaboko, A. S., & Kannan, C. (2016 b). Suicidal germination for parasitic weed control. Pest Management Science, 72(11), 2016-2025.
  • Zwanenburg, B., & Blanco-Ania, D. (2018). Strigolactones: new plant hormones in the spotlight. Journal of experimental botany, 69(9), 2205-2218.

Strigolaktonlar; Bitkisel Hormonlar Sınıfının Yeni Üyesi

Year 2021, Issue: 27, 735 - 746, 30.11.2021
https://doi.org/10.31590/ejosat.947571

Abstract

Strigolaktonlar (SL) Striga (cadı otu), Orobanche (canavar otu) gibi parazit bitkilerin tohum çimlenmesini aktive etmeleri ve arbusküler mikorizal mantarlarda dallanmaya pozitif etkilerinden dolayı uzun yıllardır araştırılmaktadır. Özellikle fosfat olmak üzere topraktaki besin eksikliği, kuraklık, tuzluluk, sıcaklık, ışık ve patojenler gibi çeşitli biyotik ve abiyotik stresler karşısında gerekli cevabın düzenlemesindeki etkisi ve bitkinin strese uyum sağlamasındaki fizyolojik görevlerinden dolayı 2008 yılında bitkisel hormonlar sınıfına dahil edilmiştir. Karotenoid türevi olan strigolaktonlar, stres karşısında sürgün dallanmasını inhibe etmede, tohum çimlenmesi, kök mimarisi gibi çeşitli bitki gelişim aşamalarını uyarmada, bitki büyümesini ve gelişimini optimize etmede aktif rol alırlar. Bu makalede strigolaktonların yapısı, biyosentezi, stres karşısında fizyolojik cevapları ve diğer bitkisel hormonlar ve bitki büyüme düzenleyicileri ile etkileşimi özetlenmiştir.

References

  • Akeel, A., Khan, M. M. A., Jaleel, H., & Uddin, M. (2019). Smoke-saturated Water and Karrikinolide Modulate Germination, Growth, Photosynthesis and Nutritional Values of Carrot (Daucus carota L.). Journal of Plant Growth Regulation, 38(4), 1387-1401.
  • Akiyama, K., & Hayashi, H. (2006). Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Annals of botany, 97(6), 925-931. doi:10.1093/aob/mcl063
  • Agusti, J., Herold, S., Schwarz, M., Sanchez, P., Ljung, K., Dun, E. A., ... & Greb, T. (2011). Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proceedings of the National Academy of Sciences, 108(50), 20242-20247.
  • Aroca, R., Ruiz-Lozano, J. M., Zamarreño, Á. M., Paz, J. A., García-Mina, J. M., Pozo, M. J., & López-Ráez, J. A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of plant physiology, 170(1), 47-55.
  • Awad, A. A., Sato, D., Kusumoto, D., Kamioka, H., Takeuchi, Y., & Yoneyama, K. (2006). Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regulation, 48(3),221.
  • Azooz, M. M., Youssef, A. M., & Ahmad, P. (2011). Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. International Journal of Plant Physiology and Biochemistry, 3(14), 253-264.
  • Banerjee, A., & Roychoudhury, A. (2018). Strigolactones: multi-level regulation of biosynthesis and diverse responses in plant abiotic stresses. Acta physiologiae plantarum, 40(5), 1-10.
  • Bartoli, C. G., Casalongué, C. A., Simontacchi, M., Marquez-Garcia, B., & Foyer, C. H. (2013). Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environmental and Experimental Botany, 94, 73-88.
  • Bensmihen, S. (2015). Hormonal control of lateral root and nodule development in legumes. Plants, 4(3), 523-547.
  • Beveridge, C. A., & Kyozuka, J. (2010). New genes in the strigolactone-related shoot branching pathway. Current opinion in plant biology, 13(1), 34-39.
  • Bhatt, M. D., & Bhatt, D. (2020). Strigolactones in Overcoming Environmental Stresses. Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives, 327.
  • Bidabadi, S. S., & Sharifi, P. (2020). Strigolactone and Methyl Jasmonate-Induced Antioxidant Defense and the Composition Alterations of Different Active Compounds in Dracocephalum kotschyi Boiss Under Drought Stress. Journal of Plant Growth Regulatıon.
  • Borghi, L., Liu, G. W., Emonet, A., Kretzschmar, T., & Martinoia, E. (2016). The importance of strigolactone transport regulation for symbiotic signaling and shoot branching. Planta, 243(6), 1351-1360.
  • Bouwmeester, H. J., Fonne‐Pfister, R., Screpanti, C., & De Mesmaeker, A. (2019). Strigolactones: plant hormones with promising features. Angewandte Chemie International Edition, 58(37), 12778-12786.
  • Brewer, P. B., Dun, E. A., Ferguson, B. J., Rameau, C., & Beveridge, C. A. (2009). Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant physiology, 150(1), 482-493.
  • Brewer, P. B., Koltai, H., & Beveridge, C. A. (2013). Diverse roles of strigolactones in plant development. Molecular plant, 6(1), 18-28.
  • Butler, L. G., in Insights into Allelopathy, ACS Symposium Series (Eds.: K. Inderjit, F. A. Einhellig), ACS Books, Washington, 1995, pp. 158–168.
  • Bürger, M., & Chory, J. (2020). The many models of strigolactone signaling. Trends in Plant Science, 25(4), 395-405.
  • Cardinale, F., Korwin Krukowski, P., Schubert, A., & Visentin, I. (2018). Strigolactones: mediators of osmotic stress responses with a potential for agrochemical manipulation of crop resilience. Journal of experimental botany, 69(9), 2291-2303.
  • Ćavar, S., Zwanenburg, B., & Tarkowski, P. (2015). Strigolactones: occurrence, structure, and biological activity in the rhizosphere. Phytochemistry Reviews, 14(4), 691-711.
  • Charnikhova, T. V., Gaus, K., Lumbroso, A., Sanders, M., Vincken, J. P., De Mesmaeker, A., ... & Bouwmeester, H. J. (2017). Zealactones. Novel natural strigolactones from maize. Phytochemistry, 137, 123-131.
  • Charnikhova, T. V., Gaus, K., Lumbroso, A., Sanders, M., Vincken, J. P., De Mesmaeker, A., & Bouwmeester, H. J. (2018). Zeapyranolactone− A novel strigolactone from maize. Phytochemistry Letters, 24, 172-178.
  • Chavoushi, M., Najafi, F., Salimi, A., & Angaji, S. A. (2019). Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Industrial Crops and Products, 134, 168-176.
  • Cheng, X., Ruyter-Spira, C., & Bouwmeester, H. (2013). The interaction between strigolactones and other plant hormones in the regulation of plant development. Frontiers in Plant Science, 4,199.
  • Cook, C. E., Whichard, L. P., Turner, B., Wall, M. E., & Egley, G. H. (1966). Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 154(3753), 1189-1190.
  • Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) J Am Chem Soc 94:6198–6199.
  • Crawford, S., Shinohara, N., Sieberer, T., Williamson, L., George, G., Hepworth, J., ... & Leyser, O. (2010). Strigolactones enhance competition between shoot branches by dampening auxin transport. Development, 137(17), 2905-2913.
  • Daws, M. I., Davies, J., Pritchard, H. W., Brown, N. A., & Van Staden, J. (2007). Butenolidefrom plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regulation, 51(1), 73-82.
  • de Saint Germain, A., Ligerot, Y., Dun, E. A., Pillot, J. P., Ross, J. J., Beveridge, C. A., & Rameau, C. (2013). Strigolactones stimulate internode elongation independently of gibberellins. Plant physiology, 163(2), 1012-1025.
  • Du, H., Huang, F., Wu, N., Li, X., Hu, H., & Xiong, L. (2018). Integrative regulation of drought escape through ABA-dependent and-independent pathways in rice. Molecular plant, 11(4), 584- 597.
  • Dun, E. A., Brewer, P. B., & Beveridge, C. A. (2009). Strigolactones: discovery of the elusive shoot branching hormone. Trends in plant science, 14(7), 364-372. Dun, E. A., de Saint Germain, A., Rameau, C., & Beveridge, C. A. (2012). Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant physiology, 158(1), 487-498.
  • El Tayeb, M. A., & Ahmed, N. L. (2010). Response of wheat cultivars to drought and salicylic acid. American-Eurasian Journal of Agronomy, 3(1), 1-7. Emamverdian, A., Ding, Y., & Xie, Y. (2020). The Role of New Members of Phytohormones in Plant Amelioration under Abiotic Stress with an Emphasis on Heavy Metals. Polish Journal of Environmental Studies, 29(2).
  • Ferrero, M., Pagliarani, C., Novák, O., Ferrandino, A., Cardinale, F., Visentin, I., & Schubert, A. (2018). Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries. Journal of experimental botany, 69(9), 2391-2401.
  • Faizan, M., Faraz, A., Sami, F., Siddiqui, H., Yusuf, M., Gruszka, D., & Hayat, S. (2020). Role of strigolactones: Signalling and crosstalk with other phytohormones. Open Life Sciences, 15(1),217-228.
  • Ferguson, B. J., & Beveridge, C. A. (2009). Roles for auxin, cytokinin, and strigolactone in regulating shoot branching. Plant physiology, 149(4), 1929-1944. Foo, E., Yoneyama, K., Hugill, C., Quittenden, L. J., & Reid, J. B. (2013). Strigolactones: internal and external signals in plant symbioses?. Plant signaling & behavior, 8(3), e23168.
  • Foo, E., Ferguson, B. J., & Reid, J. B. (2014). The potential roles of strigolactones and brassinosteroids in the autoregulation of nodulation pathway. Annals of Botany, 113(6), 1037- 1045.
  • Gomez-Roldan, V., Roux, C., Girard, D., Bécard, G., & Puech, V. (2007). Strigolactones: promising plant signals. Plant signaling & behavior, 2(3), 163-164.
  • Gomez-Roldan, V., Fermas, S., Brewer, P. B., Puech-Pagès, V., Dun, E. A., Pillot, J. P., ... & Rochange, S. F. (2008). Strigolactone inhibition of shoot branching. Nature, 455(7210), 189-194.
  • Haider, I., Andreo-Jimenez, B., Bruno, M., Bimbo, A., Floková, K., Abuauf, H., ... & Bouwmeester, H. J. (2018). The interaction of strigolactones with abscisic acid during the drought response in rice. Journal of experimental botany, 69(9), 2403-2414.
  • Hernández-Ruiz, J., & Arnao, M. B. (2018). Relationship of melatonin and salicylic acid in biotic/abiotic plant stress responses. Agronomy, 8(4), 33.
  • Ito, S., Umehara, M., Hanada, A., Yamaguchi, S., & Asami, T. (2013). Effects of strigolactone biosynthesis inhibitor TIS108 on Arabidopsis. Plant signaling & behavior, 8(5), e24193.
  • Ito, S., Nozoye, T., Sasaki, E., Imai, M., Shiwa, Y., Shibata-Hatta, M., ... & Nishizawa, N. K. (2015). Strigolactone regulates anthocyanin accumulation, acid phosphatases production and plant growth under low phosphate condition in Arabidopsis. PLoS One, 10(3), e0119724.
  • Ioio, R. D., Nakamura, K., Moubayidin, L., Perilli, S., Taniguchi, M., Morita, M. T., ... & Sabatini, S. (2008). A genetic framework for the control of cell division and differentiation in the root meristem. Science, 322(5906), 1380-1384.
  • Janssen, B. J., & Snowden, K. C. (2012). Strigolactone and karrikin signal perception:receptors, enzymes, or both?. Frontiers in plant science, 3, 296.
  • Jamil, M., Van Mourik, T. A., Charnikhova, T., & Bouwmeester, H. J. (2013). Effect of diammonium phosphate application on strigolactone production and Striga hermonthica infection in three sorghum cultivars. Weed Research, 53(2), 121-130.
  • Jia, K. P., Luo, Q., He, S. B., Lu, X. D., & Yang, H. Q. (2014). Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis. Molecular Plant, 7(3), 528-540.
  • Jia, K. P., Li, C., Bouwmeester, H. J., & Al-Babili, S. (2019). Strigolactone biosynthesis and signal transduction. In Strigolactones-Biology and Applications (pp. 1-45). Springer, Cham.
  • Jiang, L., Matthys, C., Marquez-Garcia, B., De Cuyper, C., Smet, L., De Keyser, A., ... & Goormachtig, S. (2016). Strigolactones spatially influence lateral root development through the cytokinin signaling network. Journal of experimental botany, 67(1), 379-389.
  • Joshi, N., Nautiyal, P., & Papnai, G. (2019). Unravelling diverse roles of strigolactones in stimulating plant growth and alleviating various stress conditions: A review. J Pharmaco Phytochem, 8(5), 396-404.
  • Kapulnik, Y., Resnick, N., Mayzlish-Gati, E., Kaplan, Y., Wininger, S., Hershenhorn, J., & Koltai, H. (2011). Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. Journal of experimental botany, 62(8), 2915-2924.
  • Kapulnik, Y., & Koltai, H. (2014). Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. Plant physiology, 166(2), 560-569.
  • Khan, M. I. R., Iqbal, N., Masood, A., Per, T. S., & Khan, N. A. (2013). Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling & Behavior, 8(11), e26374.
  • Kim, H. I., Kisugi, T., Khetkam, P., Xie, X., Yoneyama, K., Uchida, K., ... & Yoneyama, K. (2014). Avenaol, a germination stimulant for root parasitic plants from Avena strigosa. Phytochemistry, 103, 85-88.
  • Koltai, H., Dor, E., Hershenhorn, J., Joel, D. M., Weininger, S., Lekalla, S., ... & Barg, R. (2010). Strigolactones’ effect on root growth and root-hair elongation may be mediated by auxin-efflux carriers. Journal of Plant Growth Regulation, 29(2), 129-136.
  • Koltai, H., & Beveridge, C. A. (2013). Strigolactones and the coordinated development of shoot and root. In Long-Distance Systemic Signaling and Communication in Plants (pp. 189-204). Springer, Berlin, Heidelberg.
  • Koltai, H., & Kapulnik, Y. (2011). Strigolactones as mediators of plant growth responses to environmental conditions. Plant signaling & behavior, 6(1), 37-41. Koltai, H. (2013). Strigolactones activate different hormonal pathways for regulation of root development in response to phosphate growth conditions. Annals of Botany, 112(2), 409-415.
  • Koltai, H. (2015). Cellular events of strigolactone signalling and their crosstalk with auxin in roots. Journal of experimental botany, 66(16), 4855-4861.
  • Koren, D., Resnick, N., Gati, E. M., Belausov, E., Weininger, S., Kapulnik, Y., & Koltai, H. (2013). Strigolactone signaling in the endodermis is sufficient to restore root responses and involves SHORT HYPOCOTYL 2 (SHY2) activity. New Phytologist, 198(3), 866-874.
  • Lechat, M. M., Brun, G., Montiel, G., Véronési, C., Simier, P., Thoiron, S., ... & Delavault, P. (2015). Seed response to strigolactone is controlled by abscisic acid-independent DNA methylation in the obligate root parasitic plant, Phelipanche ramosa L. Pomel. Journal of experimental botany, 66(11), 3129-3140.
  • Li, W., Gupta, A., Tian, H., Nguyen, K. H., Tran, C. D., Watanabe, Y., ... & Luo, Y. (2020). Different strategies of strigolactone and karrikin signals in regulating the resistance of Arabidopsis thaliana to water-deficit stress. Plant Signaling & Behavior, 15(9), 1789321.
  • Lopez-Obando, M., Ligerot, Y., Bonhomme, S., Boyer, F. D., & Rameau, C. (2015). Strigolactone biosynthesis and signaling in plant development. Development, 142(21), 3615-3619.
  • López‐Ráez, J. A., Kohlen, W., Charnikhova, T., Mulder, P., Undas, A. K., Sergeant, M. J., ... & Bouwmeester, H. (2010). Does abscisic acid affect strigolactone biosynthesis?. New Phytologist, 187(2), 343-354.
  • Manandhar, S., Funnell, K. A., Woolley, D. J., & Cooney, J. M. (2018). Interaction between strigolactone and cytokinin on axillary and adventitious bud development in Zantedeschia. J Plant Physiol Pathol 6, 1, 2.
  • Marzec, M. (2016a). Perception and signaling of strigolactones. Frontiers in Plant Science, 7, 1260.
  • Marzec, M. (2016b). Strigolactones as part of the plant defence system. Trends Plant Sci. 16,30121–30122. doi: 10.1016/j.tplants.2016.08.010
  • Marzec, M. (2017). Strigolactones and gibberellins: a new couple in the phytohormone world?. Trends in plant science, 22(10), 813-815.
  • Mashiguchi, K., Sasaki, E., Shimada, Y., Nagae, M., Ueno, K., Nakano, T., ... & Asami, T. (2009). Feedback-regulation of strigolactone biosynthetic genes and strigolactone- regulated genes in Arabidopsis. Bioscience, Biotechnology, and Biochemistry, 73(11), 2460-2465.
  • Matusova, R., Rani, K., Verstappen, F. W., Franssen, M. C., Beale, M. H., & Bouwmeester, H. J. (2005). The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant physiology, 139(2), 920-934.
  • Min, Z., Li, R., Chen, L., Zhang, Y., Li, Z., Liu, M., ... & Fang, Y. (2019). Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant physiology and biochemistry, 135, 99-110.
  • Mishra, S., Upadhyay, S., & Shukla, R. K. (2017). The role of strigolactones and their potential cross-talk under hostile ecological conditions in plants. Frontiers in physiology, 7, 691.
  • Mori, K., Matsui, J., Yokota, T., Sakai, H., Bando, M., & Takeuchi, Y. (1999). Structure and synthesis of orobanchol, the germination stimulant for Orobanche minor. Tetrahedron letters, 40(5), 943-946.
  • Mostofa, M. G., Li, W., Nguyen, K. H., Fujita, M., & Tran, L. S. P. (2018). Strigolactones in plant adaptation to abiotic stresses: An emerging avenue of plant research. Plant, cell & environment, 41(10), 2227-2243.
  • MousaviNik, M., Jowkar, A., & RahimianBoogar, A. (2016). Positive effects of karrikin on seed germination of three medicinal herbs under drought stress. Iran Agricultural Research, 35(2), 57-64.
  • Nakamura, H., & Asami, T. (2014). Target sites for chemical regulation of strigolactone signaling. Frontiers in plant science, 5, 623.
  • Nasir, F., Tian, L., Shi, S., Chang, C., Ma, L., Gao, Y., & Tian, C. (2019). Strigolactones positively regulate defense against Magnaporthe oryzae in rice (Oryza sativa). Plant Physiology and Biochemistry, 142, 106-116.
  • Nasir, F., Li, W., Tran, L. S. P., & Tian, C. (2020). Does Karrikin Signaling Shape the Rhizomicrobiome via the Strigolactone Biosynthetic Pathway?. Trends in Plant Science, 25(12), 1184-1187.
  • Nelson, D. C., Scaffidi, A., Dun, E. A., Waters, M. T., Flematti, G. R., Dixon, K. W., ... & Smith, S. M. (2011). F-box protein MAX2 has dual roles in karrikin and strigolactone signaling in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 108(21), 8897-8902.
  • Omoarelojie, L. O., Kulkarni, M. G., Finnie, J. F., & Van Staden, J. (2019). Strigolactones and their crosstalk with other phytohormones. Annals of botany, 124(5), 749-767.
  • Özel, Ş. G. (2018). Strigolakton Uygulamasıyla Tuz Stresine Karşı Kum Zambağı Bitkisinin Toleransının Arttırılmasında Antioksidan Enzimlerin İşlevi. Tekirdağ Namık Kemal Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 104 sayfa, Tekirdağ.
  • Özbilen, A (2019). Zeytinde (Olea europaea L.) Strigolakton Biyosentezinde Rol Alan Genlerin Karakterizasyonu. Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 203 sayfa, Çanakkale.
  • Peres, A. L. G., Soares, J. S., Tavares, R. G., Righetto, G., Zullo, M. A., Mandava, N. B., & Menossi, M. (2019). Brassinosteroids, the sixth class of phytohormones: a molecular view from the discovery to hormonal interactions in plant development and stress adaptation. International Journal of Molecular Sciences, 20(2), 331.
  • Pozo, M. J., López‐Ráez, J. A., Azcón‐Aguilar, C., & García‐Garrido, J. M. (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist, 205(4), 1431-1436.
  • Rameau, C., Goormachtig, S., Cardinale, F., Bennett, T., & Cubas, P. (2019). Strigolactones as plant hormones. In Strigolactones-Biology and Applications (pp. 47-87). Springer, Cham.
  • Rasmussen, A., Hu, Y., Depaepe, T., Vandenbussche, F., Boyer, F. D., Van Der Straeten, D., & Geelen, D. (2017). Ethylene controls adventitious root initiation sites in Arabidopsis hypocotyls independently of strigolactones. Journal of Plant Growth Regulation, 36(4),897- 911.
  • Ren, C. G., Kong, C. C., & Xie, Z. H. (2018). Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC plant biology, 18(1), 1-10.
  • Rozpądek, P., Domka, A. M., Nosek, M., Ważny, R., Jędrzejczyk, R. J., Wiciarz, M., & Turnau, K. (2018). The role of strigolactone in the cross-talk between Arabidopsis thaliana and the endophytic fungus Mucor sp. Frontiers in microbiology, 9, 441.
  • Ruyter-Spira, C., Kohlen, W., Charnikhova, T., van Zeijl, A., van Bezouwen, L., de Ruijter, N., ... & Verstappen, F. (2011). Physiological effects of the synthetic strigolactone analog GR24 on root system architecture in Arabidopsis: another belowground role for strigolactones?. Plant physiology, 155(2), 721-734.
  • Scaffidi, A., Waters, M. T., Ghisalberti, E. L., Dixon, K. W., Flematti, G. R., & Smith, S. M. (2013). Carlactone‐independent seedling morphogenesis in Arabidopsis. The Plant Journal, 76(1), 1-9.
  • Scaffidi, A., Waters, M. T., Sun, Y. K., Skelton, B. W., Dixon, K. W., Ghisalberti, E. L., ... & Smith, S. M. (2014). Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiology, 165(3), 1221-1232.
  • Sedaghat, M., Tahmasebi-Sarvestani, Z., Emam, Y., & Mokhtassi-Bidgoli, A. (2017). Physiological and antioxidant responses of winter wheat cultivars to strigolactone and salicylic acid in drought. Plant Physiology and Biochemistry, 119, 59-69.
  • Sedaghat, M., Sarvestani, Z. T., Emam, Y., Bidgoli, A. M., & Sorooshzadeh, A. (2020). Foliar- Applied GR24 and Salicylic Acid Enhanced Wheat Drought Tolerance. Russian Journal of Plant Physiology, 67(4), 733-739.
  • Seto, Y., Kameoka, H., Yamaguchi, S., & Kyozuka, J. (2012). Recent advances in strigolactone research: chemical and biological aspects. Plant and Cell Physiology, 53(11), 1843-1853.
  • Singh, B., & Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39(2), 137-141.
  • Smith, S. M. (2014). Q&A: What are strigolactones and why are they important to plants and soil microbes?. BMC biology, 12(1), 1-7.
  • Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J. P., & Vierheilig, H. (2007). Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules, 12(7), 1290-1306.
  • Sugimoto, Y., Ali, A. M., Yabuta, S., Kinoshita, H., Inanaga, S., & Itai, A. (2003). Germination strategy of Striga hermonthica involves regulation of ethylene biosynthesis. Physiologia Plantarum, 119(1), 137-145.
  • Sun, H., Tao, J., Liu, S., Huang, S., Chen, S., Xie, X., ... & Xu, G. (2014). Strigolactones are involved in phosphate-and nitrate-deficiency-induced root development and auxin transport in rice. Journal of Experimental Botany, 65(22), 6735-6746.
  • Swarbreck, S. M., Guerringue, Y., Matthus, E., Jamieson, F. J., & Davies, J. M. (2019). Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana. The Plant Journal, 98(4), 607-621.
  • Toh, S., Kamiya, Y., Kawakami, N., Nambara, E., McCourt, P., & Tsuchiya, Y. (2012). Thermoinhibition uncovers a role for strigolactones in Arabidopsis seed germination. Plant and Cell Physiology, 53(1), 107-117.
  • Torres‐Vera, R., García, J. M., Pozo, M. J., & López‐Ráez, J. A. (2014). Do strigolactones contribute to plant defence?. Molecular Plant Pathology, 15(2), 211-216. doi: 10.1111/mpp.12074.
  • Tsuchiya, Y., Vidaurre, D., Toh, S., Hanada, A., Nambara, E., Kamiya, Y., ... & McCourt, P. (2010). A small-molecule screen identifies new functions for the plant hormone strigolactone. Nature chemical biology, 6(10), 741-749. doi: 10.1038/nchembio.435
  • Ueda, H., & Kusaba, M. (2015). Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiology, 169(1), 138-147.
  • Ueno, K., Furumoto, T., Umeda, S., Mizutani, M., Takikawa, H., Batchvarova, R., & Sugimoto, Y. (2014). Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry, 108, 122-128.
  • Umehara, M., Hanada, A., Magome, H., Takeda-Kamiya, N. & Yamaguchi, S. (2010) Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice. Plant Cell Physiol. 51(7): 1118–1126.
  • Umehara, M., Cao, M., Akiyama, K., Akatsu, T., Seto, Y., Hanada, A., ... & Yamaguchi, S. (2015). Structural requirements of strigolactones for shoot branching inhibition in rice and Arabidopsis. Plant and Cell Physiology, 56(6), 1059-1072.
  • Van Ha, C., Leyva-González, M. A., Osakabe, Y., Tran, U. T., Nishiyama, R., Watanabe, Y., ... & Yamaguchi-Shinozaki, K. (2014). Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proceedings of the National Academy of Sciences, 111(2), 851-856.
  • Vaucher JP. 1823. M´emoire sur la germination des orobanches. M´em. Mus. Hist. Nat. Paris 10:261–73.
  • Villaécija-Aguilar, J. A., Hamon-Josse, M., Carbonnel, S., Kretschmar, A., Schmid, C., Dawid, C., ... & Gutjahr, C. (2019). SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS genetics, 15(8), e1008327.
  • Visentin, I., Vitali, M., Ferrero, M., Zhang, Y., Ruyter‐Spira, C., Novák, O., ... & Cardinale, F. (2016). Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytologist, 212(4), 954-963.
  • Vurro, M., Prandi, C., & Baroccio, F. (2016). Strigolactones: how far is their commercial use for agricultural purposes?. Pest management science, 72(11), 2026-2034.
  • Wallner, E. S., López-Salmerón, V., & Greb, T. (2016). Strigolactone versus gibberellin signaling: reemerging concepts?. Planta, 243(6), 1339-1350.
  • Wani, K. I., Zehra, A., Choudhary, S., Naeem, M., Khan, M. M. A., Castroverde, C. D. M., & Aftab, T. (2020). Mechanistic Insights into Strigolactone Biosynthesis, Signaling, and Regulation During Plant Growth and Development. Journal of Plant Growth Regulation, 1-17.
  • Wang, Q., Zhu, Z., Ozkardesh, K., & Lin, C. (2013). Phytochromes and phytohormones: the shrinking degree of separation. Molecular plant, 6(1), 5-7.
  • Wang, L., Waters, M. T., & Smith, S. M. (2018). Karrikin‐KAI2 signalling provides Arabidopsis seeds with tolerance to abiotic stress and inhibits germination under conditions unfavourable to seedling establishment. New Phytologist, 219(2), 605-618.
  • Waters, M. T., Nelson, D. C., Scaffidi, A., Flematti, G. R., Sun, Y. K., Dixon, K. W., & Smith, S. M. (2012). Specialisation within the DWARF14 protein family confers distinct responses to karrikins and strigolactones in Arabidopsis. Development, 139(7), 1285-1295.
  • Xie, X., Yoneyama, K., Kusumoto, D., Yamada, Y., Takeuchi, Y., Sugimoto, Y., & Yoneyama, K. (2008). Sorgomol, germination stimulant for root parasitic plants, produced by Sorghum bicolor. Tetrahedron Letters, 49(13), 2066-2068.
  • Xie, X., Yoneyama, K., & Yoneyama, K. (2010). The Strigolactone Story. Annual Review of Phytopathology, 48(1), 93-117. doi:10.1146/annurev-phyto- 073009-114453
  • Xie, X., Kisugi, T., Yoneyama, K., Nomura, T., Akiyama, K., Uchida, K., ... & Yoneyama, K. (2017). Methyl zealactonoate, a novel germination stimulant for root parasitic weeds produced by maize. Journal of Pesticide Science, 42(2), 58-61.
  • Xie, X., Mori, N., Yoneyama, K., Nomura, T., Uchida, K., Yoneyama, K., & Akiyama, K. (2019). Lotuslactone, a non-canonical strigolactone from Lotus japonicus. Phytochemistry, 157, 200-205.
  • Yamada, Y., Furusawa, S., Nagasaka, S., Shimomura, K., Yamaguchi, S., & Umehara, M. (2014). Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta, 240(2), 399-408.
  • Yamada, Y., & Umehara, M. (2015). Possible roles of strigolactones during leaf senescence. Plants, 4(3), 664-677.
  • Yao, J., & Waters, M. T. (2020). Perception of karrikins by plants: a continuing enigma. Journal of Experimental Botany, 71(6), 1774-1781.
  • Yasui, M., Ota, R., Tsukano, C., & Takemoto, Y. (2017). Total synthesis of avenaol. Nature communications, 8(1), 1-9.
  • Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y., Ogasawara, S., Akiyama, K., ... & Yoneyama, K. (2008). Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytologist, 179(2), 484-494.
  • Yoneyama, K., Awad, A. A., Xie, X., Yoneyama, K., & Takeuchi, Y. (2010). Strigolactones as germination stimulants for root parasitic plants. Plant and Cell Physiology, 51(7), 1095-1103.
  • Yoneyama, K., Arakawa, R., Ishimoto, K., Kim, H. I., Kisugi, T., Xie, X., ... & Yoneyama, K. (2015). Difference in striga‐susceptibility is reflected in strigolactone secretion profile, but not in compatibility and host preference in arbuscular mycorrhizal symbiosis in two maize cultivars. New Phytologist, 206(3), 983-989.
  • Yoneyama, K., Xie, X., Yoneyama, K., Kisugi, T., Nomura, T., Nakatani, Y., ... & McErlean, C. S. (2018). Which are the major players, canonical or non-canonical strigolactones?.Journal of experimental botany, 69(9), 2231-2239.
  • Yoneyama, K., Xie, X., Yoneyama, K., Nomura, T., Takahashi, I., Asami, T., ... & Nakashita, H. (2019). Regulation of biosynthesis, perception, and functions of strigolactones for promoting arbuscular mycorrhizal symbiosis and managing root parasitic weeds. Pest management science, 75(9), 2353-2359.
  • Yu, Y., Wang, J., Zhang, Z., Quan, R., Zhang, H., Deng, X. W., ... & Huang, R. (2013). Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. PLoS Genet, 9(12), e1004025.
  • Zhang, Y., Haider, I., Ruyter-Spira, C., & Bouwmeester, H. J. (2013). Strigolactone biosynthesis and biology. Molecular microbial ecology of the rhizosphere, 1, 355-371.
  • Zou, X., Wang, Q., Chen, P., Yin, C., & Lin, Y. (2019). Strigolactones regulate shoot elongation by mediating gibberellin metabolism and signaling in rice (Oryza sativa L.). Journal of plant physiology, 237, 72-79.
  • Zwanenburg, B., & Pospíšil, T. (2013). Structure and activity of strigolactones: new plant hormones with a rich future. Molecular plant, 6(1), 38-62.
  • Zwanenburg, B., Ćavar Zeljković, S., & Pospíšil, T. (2016a). Synthesis of strigolactones, a strategic account. Pest management science, 72(1), 15-29. Zwanenburg, B., Mwakaboko, A. S., & Kannan, C. (2016 b). Suicidal germination for parasitic weed control. Pest Management Science, 72(11), 2016-2025.
  • Zwanenburg, B., & Blanco-Ania, D. (2018). Strigolactones: new plant hormones in the spotlight. Journal of experimental botany, 69(9), 2205-2218.
There are 134 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Semra Arıkan 0000-0002-9242-8236

Şengül Karaman

Early Pub Date July 29, 2021
Publication Date November 30, 2021
Published in Issue Year 2021 Issue: 27

Cite

APA Arıkan, S., & Karaman, Ş. (2021). Strigolaktonlar; Bitkisel Hormonlar Sınıfının Yeni Üyesi. Avrupa Bilim Ve Teknoloji Dergisi(27), 735-746. https://doi.org/10.31590/ejosat.947571