Research Article
BibTex RIS Cite

Aktif Bozucu Bastırma Tekniğinin Teorik Açıdan İncelenmesi

Year 2021, Issue: 29, 284 - 291, 01.12.2021
https://doi.org/10.31590/ejosat.1024241

Abstract

Bu makale, yeni bir bozucu bastırma tekniği olan aktif bozucu bastırma kontrolünü (ADRC) tartışmaktadır. Teknik, çeşitli endüstri sektörlerinde ve çeşitli araştırma alanlarında son zamanlarda uygulanan kontrol şemalarından biridir. Metodoloji, teorik bir bakış açısıyla detaylandırılmıştır. Ayrıca, kontrol teknikleri bazı kriterlere göre sınıflandırılmıştır. Bu makale, ADRC'nin kontrol tekniklerini kontrolör perspektifinden ifade etmeyi amaçlamaktadır.

References

  • Åarzén, K.-E. (1999). A simple event-based PID controller. IFAC Proceedings Volumes, 32(2), 8687–8692. https://doi.org/10.1016/S1474-6670(17)57482-0
  • Ahi, B., & Haeri, M. (2018). Linear Active Disturbance Rejection Control from the Practical Aspects. IEEE/ASME Transactions on Mechatronics, 23(6), 2909–2919. https://doi.org/10.1109/TMECH.2018.2871880
  • Alonge, F., Cirrincione, M., D’Ippolito, F., Pucci, M., & Sferlazza, A. (2017). Robust Active Disturbance Rejection Control of Induction Motor Systems Based on Additional Sliding-Mode Component. IEEE Transactions on Industrial Electronics, 64(7), 5608–5621. https://doi.org/10.1109/TIE.2017.2677298
  • Bayrak, A., & Efe, M. Ö. (2021). A frequency domain comparison of disturbance observer based control schemes. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 095965182110365. https://doi.org/10.1177/09596518211036597
  • Chen, W.-H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Transactions on Industrial Electronics, 63(2), 1083–1095. https://doi.org/10.1109/TIE.2015.2478397
  • Chen Wei, Chen Yankun, Li Hongfeng, & Song Zhanfeng. (2012). Sensorless control of permanent magnet synchronous motor based on sliding mode observer. Proceedings of The 7th International Power Electronics and Motion Control Conference, 2582–2586. https://doi.org/10.1109/IPEMC.2012.6259266
  • Cui, W., Tan, W., Li, D., & Wang, Y. (2020). Tuning of linear active disturbance rejection controllers based on step response curves. IEEE Access, 8, 180869–180882. https://doi.org/10.1109/ACCESS.2020.3028459
  • Cui, W., Tan, W., Li, D., Wang, Y., & Wang, S. (2020). A Relay Feedback Method for the Tuning of Linear Active Disturbance Rejection Controllers. IEEE Access, 8, 4542–4550. https://doi.org/10.1109/ACCESS.2019.2963419
  • Dong, H., Huang, H., & Zhuang, Y. (2020). Heading Angle Controller Design of USV Based on Improved Sliding Mode Active Disturbance Rejection Control. Proceedings - 2020 Chinese Automation Congress, CAC 2020, (2), 3547–3551. https://doi.org/10.1109/CAC51589.2020.9326809
  • Du, Y., Cao, W., She, J., & Fang, M. (2020). A Comparison Study of Three Active Disturbance Rejection Methods. Chinese Control Conference, CCC, 2020-July, 135–139. https://doi.org/10.23919/CCC50068.2020.9189230
  • Efe, M. Ö., & Kasnakoğlu, C. (2021). A nonlinear disturbance observer scheme for discrete time control systems. Turkish Journal of Electrical Engineering and Computer Sciences, 29(2), 1044–1060. https://doi.org/10.3906/ELK-2005-206
  • Fliess, M., & Join, C. (2013). Model-free control. International Journal of Control, 86(12), 2228–2252. https://doi.org/10.1080/00207179.2013.810345
  • Frikh, M. L., Soltani, F., Bensiali, N., Boutasseta, N., & Fergani, N. (2021). Fractional order PID controller design for wind turbine systems using analytical and computational tuning approaches. Computers and Electrical Engineering, 95(June 2020), 107410. https://doi.org/10.1016/j.compeleceng.2021.107410
  • Garrido, R., & Luna, L. (2021). Robust ultra-precision motion control of linear ultrasonic motors: A combined ADRC-Luenberger observer approach. Control Engineering Practice, 111(March), 104812. https://doi.org/10.1016/j.conengprac.2021.104812
  • Guo, B.-Z., & Zhao, Z.-L. (2011). Extended State Observer for Nonlinear Systems with Uncertainty. IFAC Proceedings Volumes, 44(1), 1855–1860. https://doi.org/10.3182/20110828-6-IT-1002.00399
  • Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906. https://doi.org/10.1109/TIE.2008.2011621
  • He, H., Si, T., Sun, L., Liu, B., & Li, Z. (2020). Linear Active Disturbance Rejection Control for Three-Phase Voltage-Source PWM Rectifier. IEEE Access, 8, 45050–45060. https://doi.org/10.1109/ACCESS.2020.2978579
  • He, T., Wu, Z., Li, D., & Wang, J. (2020). A tuning method of active disturbance rejection control for a class of high-order processes. IEEE Transactions on Industrial Electronics, 67(4), 3191–3201. https://doi.org/10.1109/TIE.2019.2908592
  • Kapoulea, S., Psychalinos, C., Elwakil, A. S., & HosseinNia, S. H. (2021). Realizations of fractional-order PID loop-shaping controller for mechatronic applications. Integration, 80(March), 5–12. https://doi.org/10.1016/j.vlsi.2021.04.009
  • Li, R., Li, T., Li, X., & Shen, H. (2016). Path following for underactuated ships control and simulation based on active disturbance rejection with sliding mode control. ICIC Express Letters, 10(6), 1415–1420.
  • Liu, R.-J., Liu, G.-P., Wu, M., & Nie, Z.-Y. (2014). Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach. Journal of the Franklin Institute, 351(6), 3364–3377. https://doi.org/10.1016/j.jfranklin.2014.02.015
  • Mishra, S. K., Jha, A. V., Verma, V. K., Appasani, B., Abdelaziz, A. Y., & Bizon, N. (2021). An optimized triggering algorithm for event-triggered control of networked control systems. Mathematics, 9(11), 1–22. https://doi.org/10.3390/math9111262
  • Ozbek, N. S. (2019). An Evaluation of Model-Free Control Strategies for Quadrotor Type Unmanned Aerial Vehicles. Proceedings - 2019 3rd International Conference on Applied Automation and Industrial Diagnostics, ICAAID 2019, (September), 25–27. https://doi.org/10.1109/ICAAID.2019.8935001
  • Ramírez-Neria, M., Sira-Ramírez, H., Garrido-Moctezuma, R., & Luviano-Juárez, A. (2014). Linear active disturbance rejection control of underactuated systems: The case of the Furuta pendulum. ISA Transactions, 53(4), 920–928. https://doi.org/10.1016/j.isatra.2013.09.023
  • Shim, H., Park, G., Joo, Y., Back, J., & Jo, N. H. (2016). Yet another tutorial of disturbance observer: robust stabilization and recovery of nominal performance. Control Theory and Technology, 14(3), 237–249. https://doi.org/10.1007/s11768-016-6006-9
  • Wang, Y., Tan, W., Cui, W., Han, W., & Guo, Q. (2021). Linear active disturbance rejection control for oscillatory systems with large time-delays. Journal of the Franklin Institute, 358(12), 6240–6260. https://doi.org/10.1016/j.jfranklin.2021.06.016
  • Yoo, D., Yau, S. S.-T., & Gao, Z. (2006). On convergence of the linear extended state observer. 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 1645–1650. https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776888
  • Yu, H., Guan, Z., Chen, T., & Yamamoto, T. (2020). Design of data-driven PID controllers with adaptive updating rules. Automatica, 121, 109185. https://doi.org/10.1016/j.automatica.2020.109185
  • Zhou, Xiangyang, Wang, T., & Diallo, D. (2020). An active disturbance rejection sensorless control strategy based on sliding mode observer for marine current turbine. ISA Transactions, (xxxx). https://doi.org/10.1016/j.isatra.2020.05.027
  • Zhou, Xuesong, Liu, M., Ma, Y., & Wen, S. (2020). Improved linear active disturbance rejection controller control considering bus voltage filtering in permanent magnet synchronous generator. IEEE Access, 8, 19982–19996. https://doi.org/10.1109/ACCESS.2020.2967395
  • Dong, H., Huang, H., & Zhuang, Y. (2020). Heading Angle Controller Design of USV Based on Improved Sliding Mode Active Disturbance Rejection Control. Proceedings - 2020 Chinese Automation Congress, CAC 2020, 2, 3547–3551. https://doi.org/10.1109/CAC51589.2020.9326809
  • Feng, H., & Guo, B. Z. (2017). Active disturbance rejection control: Old and new results. Annual Reviews in Control, 44, 238–248. https://doi.org/10.1016/j.arcontrol.2017.05.003
  • Jiang, Z., Zhou, L., Zhang, Z., Jiang, F., & Cheng, L. (2019). An equivalent-input-disturbance-based sliding mode control approach for dc-dc buck converter system with mismatched disturbances. Chinese Control Conference, CCC, 2019-July, 639–644. https://doi.org/10.23919/ChiCC.2019.8865812
  • Sun, G., Li, Y., Jin, W., & Bu, L. (2017). A Nonlinear Three-Phase Phase-Locked Loop Based on Linear Active Disturbance Rejection Controller. IEEE Access, 5, 21548–21556. https://doi.org/10.1109/ACCESS.2017.2759166
  • Wang, Y. W., Zhang, W. A., & Yu, L. (2020). A Linear Active Disturbance Rejection Control Approach to Position Synchronization Control for Networked Interconnected Motion System. IEEE Transactions on Control of Network Systems, 7(4), 1746–1756. https://doi.org/10.1109/TCNS.2020.2999305
  • Du, Y., Cao, W., She, J., & Fang, M. (2020). A Comparison Study of Three Active Disturbance Rejection Methods. Chinese Control Conference, CCC, 2020-July, 135–139. https://doi.org/10.23919/CCC50068.2020.9189230
  • Wang, R., Hu, B., Sun, S., Man, F., Yu, Z., & Chen, Q. (2019). Linear Active Disturbance Rejection Control for DC Side Voltage of Single-Phase Active Power Filters. IEEE Access, 7, 73095–73105. https://doi.org/10.1109/ACCESS.2019.2920626
  • Herbst, G. (2013). A Simulative Study on Active Disturbance Rejection Control (ADRC) as a Control Tool for Practitioners. Electronics, 2(4), 246–279. https://doi.org/10.3390/electronics2030246

An Assessment of Active Disturbance Rejection Technique From a Theoretical Perspective

Year 2021, Issue: 29, 284 - 291, 01.12.2021
https://doi.org/10.31590/ejosat.1024241

Abstract

This paper discusses a recent disturbance suppression technique namely, active disturbance rejection control (ADRC) from the theoretical perspective. The technique is one of the recently applied control schemes in various sectors of industry and several areas of research. The methodology is elaborated with a theoretical perspective. Furthermore, the control techniques are categorized by some criteria. The paper aims to express the control techniques of ADRC from controller’s perspective.

References

  • Åarzén, K.-E. (1999). A simple event-based PID controller. IFAC Proceedings Volumes, 32(2), 8687–8692. https://doi.org/10.1016/S1474-6670(17)57482-0
  • Ahi, B., & Haeri, M. (2018). Linear Active Disturbance Rejection Control from the Practical Aspects. IEEE/ASME Transactions on Mechatronics, 23(6), 2909–2919. https://doi.org/10.1109/TMECH.2018.2871880
  • Alonge, F., Cirrincione, M., D’Ippolito, F., Pucci, M., & Sferlazza, A. (2017). Robust Active Disturbance Rejection Control of Induction Motor Systems Based on Additional Sliding-Mode Component. IEEE Transactions on Industrial Electronics, 64(7), 5608–5621. https://doi.org/10.1109/TIE.2017.2677298
  • Bayrak, A., & Efe, M. Ö. (2021). A frequency domain comparison of disturbance observer based control schemes. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 095965182110365. https://doi.org/10.1177/09596518211036597
  • Chen, W.-H., Yang, J., Guo, L., & Li, S. (2016). Disturbance-Observer-Based Control and Related Methods—An Overview. IEEE Transactions on Industrial Electronics, 63(2), 1083–1095. https://doi.org/10.1109/TIE.2015.2478397
  • Chen Wei, Chen Yankun, Li Hongfeng, & Song Zhanfeng. (2012). Sensorless control of permanent magnet synchronous motor based on sliding mode observer. Proceedings of The 7th International Power Electronics and Motion Control Conference, 2582–2586. https://doi.org/10.1109/IPEMC.2012.6259266
  • Cui, W., Tan, W., Li, D., & Wang, Y. (2020). Tuning of linear active disturbance rejection controllers based on step response curves. IEEE Access, 8, 180869–180882. https://doi.org/10.1109/ACCESS.2020.3028459
  • Cui, W., Tan, W., Li, D., Wang, Y., & Wang, S. (2020). A Relay Feedback Method for the Tuning of Linear Active Disturbance Rejection Controllers. IEEE Access, 8, 4542–4550. https://doi.org/10.1109/ACCESS.2019.2963419
  • Dong, H., Huang, H., & Zhuang, Y. (2020). Heading Angle Controller Design of USV Based on Improved Sliding Mode Active Disturbance Rejection Control. Proceedings - 2020 Chinese Automation Congress, CAC 2020, (2), 3547–3551. https://doi.org/10.1109/CAC51589.2020.9326809
  • Du, Y., Cao, W., She, J., & Fang, M. (2020). A Comparison Study of Three Active Disturbance Rejection Methods. Chinese Control Conference, CCC, 2020-July, 135–139. https://doi.org/10.23919/CCC50068.2020.9189230
  • Efe, M. Ö., & Kasnakoğlu, C. (2021). A nonlinear disturbance observer scheme for discrete time control systems. Turkish Journal of Electrical Engineering and Computer Sciences, 29(2), 1044–1060. https://doi.org/10.3906/ELK-2005-206
  • Fliess, M., & Join, C. (2013). Model-free control. International Journal of Control, 86(12), 2228–2252. https://doi.org/10.1080/00207179.2013.810345
  • Frikh, M. L., Soltani, F., Bensiali, N., Boutasseta, N., & Fergani, N. (2021). Fractional order PID controller design for wind turbine systems using analytical and computational tuning approaches. Computers and Electrical Engineering, 95(June 2020), 107410. https://doi.org/10.1016/j.compeleceng.2021.107410
  • Garrido, R., & Luna, L. (2021). Robust ultra-precision motion control of linear ultrasonic motors: A combined ADRC-Luenberger observer approach. Control Engineering Practice, 111(March), 104812. https://doi.org/10.1016/j.conengprac.2021.104812
  • Guo, B.-Z., & Zhao, Z.-L. (2011). Extended State Observer for Nonlinear Systems with Uncertainty. IFAC Proceedings Volumes, 44(1), 1855–1860. https://doi.org/10.3182/20110828-6-IT-1002.00399
  • Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906. https://doi.org/10.1109/TIE.2008.2011621
  • He, H., Si, T., Sun, L., Liu, B., & Li, Z. (2020). Linear Active Disturbance Rejection Control for Three-Phase Voltage-Source PWM Rectifier. IEEE Access, 8, 45050–45060. https://doi.org/10.1109/ACCESS.2020.2978579
  • He, T., Wu, Z., Li, D., & Wang, J. (2020). A tuning method of active disturbance rejection control for a class of high-order processes. IEEE Transactions on Industrial Electronics, 67(4), 3191–3201. https://doi.org/10.1109/TIE.2019.2908592
  • Kapoulea, S., Psychalinos, C., Elwakil, A. S., & HosseinNia, S. H. (2021). Realizations of fractional-order PID loop-shaping controller for mechatronic applications. Integration, 80(March), 5–12. https://doi.org/10.1016/j.vlsi.2021.04.009
  • Li, R., Li, T., Li, X., & Shen, H. (2016). Path following for underactuated ships control and simulation based on active disturbance rejection with sliding mode control. ICIC Express Letters, 10(6), 1415–1420.
  • Liu, R.-J., Liu, G.-P., Wu, M., & Nie, Z.-Y. (2014). Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach. Journal of the Franklin Institute, 351(6), 3364–3377. https://doi.org/10.1016/j.jfranklin.2014.02.015
  • Mishra, S. K., Jha, A. V., Verma, V. K., Appasani, B., Abdelaziz, A. Y., & Bizon, N. (2021). An optimized triggering algorithm for event-triggered control of networked control systems. Mathematics, 9(11), 1–22. https://doi.org/10.3390/math9111262
  • Ozbek, N. S. (2019). An Evaluation of Model-Free Control Strategies for Quadrotor Type Unmanned Aerial Vehicles. Proceedings - 2019 3rd International Conference on Applied Automation and Industrial Diagnostics, ICAAID 2019, (September), 25–27. https://doi.org/10.1109/ICAAID.2019.8935001
  • Ramírez-Neria, M., Sira-Ramírez, H., Garrido-Moctezuma, R., & Luviano-Juárez, A. (2014). Linear active disturbance rejection control of underactuated systems: The case of the Furuta pendulum. ISA Transactions, 53(4), 920–928. https://doi.org/10.1016/j.isatra.2013.09.023
  • Shim, H., Park, G., Joo, Y., Back, J., & Jo, N. H. (2016). Yet another tutorial of disturbance observer: robust stabilization and recovery of nominal performance. Control Theory and Technology, 14(3), 237–249. https://doi.org/10.1007/s11768-016-6006-9
  • Wang, Y., Tan, W., Cui, W., Han, W., & Guo, Q. (2021). Linear active disturbance rejection control for oscillatory systems with large time-delays. Journal of the Franklin Institute, 358(12), 6240–6260. https://doi.org/10.1016/j.jfranklin.2021.06.016
  • Yoo, D., Yau, S. S.-T., & Gao, Z. (2006). On convergence of the linear extended state observer. 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 1645–1650. https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776888
  • Yu, H., Guan, Z., Chen, T., & Yamamoto, T. (2020). Design of data-driven PID controllers with adaptive updating rules. Automatica, 121, 109185. https://doi.org/10.1016/j.automatica.2020.109185
  • Zhou, Xiangyang, Wang, T., & Diallo, D. (2020). An active disturbance rejection sensorless control strategy based on sliding mode observer for marine current turbine. ISA Transactions, (xxxx). https://doi.org/10.1016/j.isatra.2020.05.027
  • Zhou, Xuesong, Liu, M., Ma, Y., & Wen, S. (2020). Improved linear active disturbance rejection controller control considering bus voltage filtering in permanent magnet synchronous generator. IEEE Access, 8, 19982–19996. https://doi.org/10.1109/ACCESS.2020.2967395
  • Dong, H., Huang, H., & Zhuang, Y. (2020). Heading Angle Controller Design of USV Based on Improved Sliding Mode Active Disturbance Rejection Control. Proceedings - 2020 Chinese Automation Congress, CAC 2020, 2, 3547–3551. https://doi.org/10.1109/CAC51589.2020.9326809
  • Feng, H., & Guo, B. Z. (2017). Active disturbance rejection control: Old and new results. Annual Reviews in Control, 44, 238–248. https://doi.org/10.1016/j.arcontrol.2017.05.003
  • Jiang, Z., Zhou, L., Zhang, Z., Jiang, F., & Cheng, L. (2019). An equivalent-input-disturbance-based sliding mode control approach for dc-dc buck converter system with mismatched disturbances. Chinese Control Conference, CCC, 2019-July, 639–644. https://doi.org/10.23919/ChiCC.2019.8865812
  • Sun, G., Li, Y., Jin, W., & Bu, L. (2017). A Nonlinear Three-Phase Phase-Locked Loop Based on Linear Active Disturbance Rejection Controller. IEEE Access, 5, 21548–21556. https://doi.org/10.1109/ACCESS.2017.2759166
  • Wang, Y. W., Zhang, W. A., & Yu, L. (2020). A Linear Active Disturbance Rejection Control Approach to Position Synchronization Control for Networked Interconnected Motion System. IEEE Transactions on Control of Network Systems, 7(4), 1746–1756. https://doi.org/10.1109/TCNS.2020.2999305
  • Du, Y., Cao, W., She, J., & Fang, M. (2020). A Comparison Study of Three Active Disturbance Rejection Methods. Chinese Control Conference, CCC, 2020-July, 135–139. https://doi.org/10.23919/CCC50068.2020.9189230
  • Wang, R., Hu, B., Sun, S., Man, F., Yu, Z., & Chen, Q. (2019). Linear Active Disturbance Rejection Control for DC Side Voltage of Single-Phase Active Power Filters. IEEE Access, 7, 73095–73105. https://doi.org/10.1109/ACCESS.2019.2920626
  • Herbst, G. (2013). A Simulative Study on Active Disturbance Rejection Control (ADRC) as a Control Tool for Practitioners. Electronics, 2(4), 246–279. https://doi.org/10.3390/electronics2030246
There are 38 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Deha Eker 0000-0002-8457-1438

Necdet Sinan Özbek 0000-0002-7184-9015

Early Pub Date December 15, 2021
Publication Date December 1, 2021
Published in Issue Year 2021 Issue: 29

Cite

APA Eker, D., & Özbek, N. S. (2021). An Assessment of Active Disturbance Rejection Technique From a Theoretical Perspective. Avrupa Bilim Ve Teknoloji Dergisi(29), 284-291. https://doi.org/10.31590/ejosat.1024241