Research Article
BibTex RIS Cite

Pütresin’in Tuz Stresi Altında Yetişen Yer Fıstığı (Arachis hypogaea L.)’na Etkisi

Year 2021, Issue: 31, 562 - 567, 31.12.2021
https://doi.org/10.31590/ejosat.1013051

Abstract

Dünyada değişen iklim koşulları, bitkilerin verimliliğini azaltmakta ve gıda güvenliği sorunları oluşturmaktadır. Gıda güvenliği ve kıtlık sorunlarının azaltılması bağlamında yer fıstığı, beslenme ihtiyaçlarını karşılamak adına olağanüstü bileşenler içermektedir. Flavonoidler, Fenolikler, resveratrol ve polifenoller dahil olmak üzere bünyesinde birçok biyoaktif bileşen bulunan yer fıstığı çok amaçlı kullanım alanlarına sahip yağlı tohumlu bir baklagil bitkisidir. Bu çalışma, iklim odasında tuz stresi koşullarında yetiştirilen yer fıstığı bitkisinin pütresin uygulaması ile morfolojik parametreler ve klorofil miktarı üzerine nasıl değişime uğrayacağını gözlemlemek adına yürütülmüştür. Tesadüf parselleri deneme desenine göre 3 tekerrürlü olarak kurulan çalışmada gövde uzunluğu, gövde ağırlığı, kök uzunluğu, kök ağırlığı, yaprak sayısı, yaprak ağırlığı ve klorofil miktarı değerleri belirlenmiştir. Çalışma sonucunda yüksek tuz stresi şartlarında (300 mM) kontrol ve pütresin uygulaması arasında istatistiki olarak farlılıklar tespit edilmiştir. Özellikle kolorofil miktarı değerlerinde pütresin uygulamasından elde edilen sonuçlar bu uygulamanın yarayışlılığını ispatlar niteliktedir. Kontrol grubunun 300 mM tuz uygulamasında görülen yapraklardaki sararma başlangıcının pütresin uygulaması ile ortadan kalktığı görülmüşür. Deneme sonuçlarından elde edilen bilgilerin yer fıstığının tuz stresi dayanıklılığını araştıran müteşebbislere faydalı olacağı düşünülmektedir.

Thanks

Tohum teminini sağlayan Progen şirketinden Dr. Halil Bakal’a ve çalışmanın istatistiksel analizleri ile grafiklerinde yardımı olan Dr. Emrah Güler’e şükranlarımı sunarım.

References

  • Abd Elbar, O. H., Farag, R. E., & Shehata, S. A. (2019). Effect of putrescine application on some growth, biochemical and anatomical characteristics of Thymus vulgaris L. under drought stress. Annals of Agricultural Sciences, 64(2), 129-137.
  • Akcay UC, Ercan O, Kavas M, Yildiz L, Yilmaz C, et al. (2010) Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) seedlings. Plant Growth Regul 61: 21–28.
  • Alcázar, R.; Bueno, M.; Tiburcio, A.F. Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells 2020, 9, 2373.
  • Aziz, A.; Martin-Tanguy, J.; Larher, F. Salt stress-induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs. Plant Sci. 1999, 145, 83–91.
  • Bais, H.P.; Ravishankar, G.A. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell. Tissue Organ Cult. 2002, 69, 1–34.
  • Bartels D (2001) Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance. Trends Plant Sci 6: 284–286.
  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res 97: 248–253.
  • Bennett S.J., Barrett-Lennard E.G., Colmer T.D. (2009) Salinity and waterlogging as constraints to saltland pasture production: a review. Agriculture, Ecosystems & Environment, 129, 349–360
  • Bhatnagar-Mathur P, Devi MJ, Vadez V, Sharma KK (2009) Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress. J Plant Physiol 166: 1207–1217.
  • Bhatnagar-Mathur P, Rao JS, Vadez V, Dumbala SR, Rathore A, et al. (2014) Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed 33: 327–340.
  • Boggs, J. L., Tsegaye, T. D., Coleman, T. L., Reddy, K. C., & Fahsi, A. (2003). Relationship between hyperspectral reflectance, soil nitrate-nitrogen, cotton leaf chlorophyll, and cotton yield: a step toward precision agriculture. Journal of Sustainable Agriculture, 22(3), 5-16.
  • Caliskan, S., M.E. Caliskan, and Arslan, M. 2008. Genotypic differences for reproductive growth, yield, and yield components in groundnut (Arachis hypogaea L.). Turk. J. Agr. Forest., 32, 415-424.
  • Carter J.L., Colmer T.D., Veneklaas E.J. (2006) Variable tolerance of wetland tree species to combined salinity and waterlogging is related to regulation of ion uptake and production of organic solutes. New Phytologist, 169, 123–134.
  • Chen, D.; Shao, Q.; Yin, L.; Younis, A.; Zheng, B. Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 2019, 9, 1945.
  • Estajia A, Roostaa HR, Rezaeia SA, Hosseinia S, Niknam F (2018) Morphological, physiological and phytochemical response of different Satureja hortensis L. accessions to salinity in a greenhouse experiment. J Appl Res Med Aromat Plants 10:25–33. https://doi.org/10.1016/j.jarmap.2018.04.005
  • Farooq, M.; Wahid, A.; Lee, D.-J. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis, and membrane properties. Acta Physiol. Plant. 2009, 31, 937–945.
  • Farsaraei, S., Mehdizadeh, L., & Moghaddam, M. (2021). Seed Priming with Putrescine Alleviated Salinity Stress During Germination and Seedling Growth of Medicinal Pumpkin. Journal of Soil Science and Plant Nutrition, 1-11.
  • Food and Agriculture Organization (2021, 19 Ekim) Erişim adresi https://www.fao.org/faostat/en/#data/QCL Ghassemi F., Jakeman A.J., Nix H.A. (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CAB international, Walloongford, UK
  • Ghimire, B., Timsina, D., & Nepal, J. (2015). Analysis of chlorophyll content and its correlation with yield attributing traits on early varieties of maize (Zea mays L.). Journal of Maize Research and Development, 1(1), 134-145.
  • Gulluoglu, L., H. Bakal, B. Onat, A. El Sabagh, and H. Arioglu. 2016. Characterization of peanut (Arachis hypogaea L.) seed oil and fatty acids composition under different growing season under Mediterranean environment. Journal of Experimental Biology and Agricultural Sciences. http://dx.doi.org/10.18006/2016, 4(5S):564-571
  • Hasthanasombut S, Supaibulwatana K, Mii M, Nakamura I (2011) Genetic manipulation of Japonica rice using the OsBADH1 gene from Indica rice to improve salinity tolerance. Plant Cell Tiss Organ Cult 104: 79–89.
  • Hirabayashi Y., Mahendran R., Koirala S., Konoshima L., Yamazaki D., Watanabe S., Kim H., Kanae S. (2013) Global flood risk under climate change. Nature Climate Change, 3, 816–821.
  • Kandel, B. P. (2020). Spad value varies with age and leaf of maize plant and its relationship with grain yield. BMC Research Notes, 13(1), 1-4.
  • Kurt, C., Bakal, H., Gulluoglu, L., & Arioglu, H. (2017). The effect of twin row planting pattern and plant population on yield and yield components of peanut (Arachis hypogaea L.) at main crop planting in Cukurova region of Turkey. Turkish Journal of Field Crops, 22(1), 24-31.
  • Maathuis FJM, Ahmad I, Patishtan J (2014) Regulation of Na+ fluxes in plants. Front Plant Sci 5:467–477. https://doi.org/10.3389/fpls.2014.00467
  • Maiti, D., Das, D. K., Karak, T., & Banerjee, M. (2004). Management of nitrogen through the use of leaf color chart (LCC) and soil plant analysis development (SPAD) or chlorophyll meter in rice under irrigated ecosystem. TheScientificWorldJOURNAL, 4, 838-846.
  • Martin J., Fackler P.L., Nichols J.D., Lubow B.C., Eaton M.J., Runge M.C., Stith B.M., Langtimm C.A. (2011) Structured decision making as a proactive approach to dealing with sea level rise in Florida. Climatic Change, 107, 185– 202.
  • Martinez-Beltran J, Manzur CL (2005) Overview of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of the International Salinity Forum, April 2005; Riverside, California, USA. sf. 311–313.
  • Pál, M., Szalai, G., & Janda, T. (2015). Speculation: polyamines are important in abiotic stress signaling. Plant Science, 237, 16-23.
  • Parvin, S.; Lee, O.R.; Sathiyaraj, G.; Khorolragchaa, A.; Kim, Y.-J.; Yang, D.-C. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene 2014, 537, 70–78.
  • Paul D, Dineshkumar N, Nair S, 2006. Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World Journal of Microbiology and Biotechnology, 22 (Suppl 4): 369-374.
  • Sarkar, T., Thankappan, R., Kumar, A., Mishra, G. P., & Dobaria, J. R. (2014). Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One, 9(12), e110507.
  • Sharma, M. L. (1999). Polyamine metabolism under abiotic stress in higher plants: salinity, drought and high temperature. Physiology and Molecular Biology of Plants, 5, 103-113.
  • Sheokand, S., Kumari, A., & Sawhney, V. (2008). Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiology and Molecular Biology of Plants, 14(4), 355-362.
  • Shoba D, Manivannan N, Vindhiyavarman P, Nigam SN (2012) SSR markers associated for late leaf spot disease resistance by bulked segregant analysis in groundnut (Arachis hypogaea L.). Euphytica 188: 265–272.
  • Zhang JL, Shi H (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115(1):1–22. https://doi.org/10.1007/s11120-013-9813-6

Effect of Putrescine on Peanut (Arachis hypogaea L.) Growing under Saline Stress

Year 2021, Issue: 31, 562 - 567, 31.12.2021
https://doi.org/10.31590/ejosat.1013051

Abstract

Changing climatic conditions in the world reduce the productivity of plants and create food safety problems. In the context of food security and reducing scarcity problems, peanuts contain extraordinary components to meet their nutritional needs. Peanut, which contains many bioactive components including flavonoids, phenolics, resveratrol, and polyphenols, is an oilseed legume plant with multi-purpose uses. This study was carried out to observe how the peanut plant grown under salt stress conditions in the climate chamber would change the morphological parameters and chlorophyll amount with the application of the putrescine. Stem length, stem weight, root length, root weight, leaf number, leaf weight, and chlorophyll content values were determined in the study, which was established with 3 replications according to the randomized plots experimental design. As a result of the study, statistical differences were determined between control and putrescine application under high salt stress conditions (300 mM). The results obtained from the putrescine application, especially in chlorophyll content values, prove the usefulness of this application. It was observed that the yellowing on the leaves of the control group, which was observed in the application of 300 mM salt, disappeared with the application of putrescine. It is thought that the information obtained from the trial results will be beneficial to the entrepreneurs investigating the salt stress resistance of the peanut.

References

  • Abd Elbar, O. H., Farag, R. E., & Shehata, S. A. (2019). Effect of putrescine application on some growth, biochemical and anatomical characteristics of Thymus vulgaris L. under drought stress. Annals of Agricultural Sciences, 64(2), 129-137.
  • Akcay UC, Ercan O, Kavas M, Yildiz L, Yilmaz C, et al. (2010) Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) seedlings. Plant Growth Regul 61: 21–28.
  • Alcázar, R.; Bueno, M.; Tiburcio, A.F. Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells 2020, 9, 2373.
  • Aziz, A.; Martin-Tanguy, J.; Larher, F. Salt stress-induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs. Plant Sci. 1999, 145, 83–91.
  • Bais, H.P.; Ravishankar, G.A. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell. Tissue Organ Cult. 2002, 69, 1–34.
  • Bartels D (2001) Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance. Trends Plant Sci 6: 284–286.
  • Benjamin JG, Nielsen DC (2006) Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res 97: 248–253.
  • Bennett S.J., Barrett-Lennard E.G., Colmer T.D. (2009) Salinity and waterlogging as constraints to saltland pasture production: a review. Agriculture, Ecosystems & Environment, 129, 349–360
  • Bhatnagar-Mathur P, Devi MJ, Vadez V, Sharma KK (2009) Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress. J Plant Physiol 166: 1207–1217.
  • Bhatnagar-Mathur P, Rao JS, Vadez V, Dumbala SR, Rathore A, et al. (2014) Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed 33: 327–340.
  • Boggs, J. L., Tsegaye, T. D., Coleman, T. L., Reddy, K. C., & Fahsi, A. (2003). Relationship between hyperspectral reflectance, soil nitrate-nitrogen, cotton leaf chlorophyll, and cotton yield: a step toward precision agriculture. Journal of Sustainable Agriculture, 22(3), 5-16.
  • Caliskan, S., M.E. Caliskan, and Arslan, M. 2008. Genotypic differences for reproductive growth, yield, and yield components in groundnut (Arachis hypogaea L.). Turk. J. Agr. Forest., 32, 415-424.
  • Carter J.L., Colmer T.D., Veneklaas E.J. (2006) Variable tolerance of wetland tree species to combined salinity and waterlogging is related to regulation of ion uptake and production of organic solutes. New Phytologist, 169, 123–134.
  • Chen, D.; Shao, Q.; Yin, L.; Younis, A.; Zheng, B. Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 2019, 9, 1945.
  • Estajia A, Roostaa HR, Rezaeia SA, Hosseinia S, Niknam F (2018) Morphological, physiological and phytochemical response of different Satureja hortensis L. accessions to salinity in a greenhouse experiment. J Appl Res Med Aromat Plants 10:25–33. https://doi.org/10.1016/j.jarmap.2018.04.005
  • Farooq, M.; Wahid, A.; Lee, D.-J. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis, and membrane properties. Acta Physiol. Plant. 2009, 31, 937–945.
  • Farsaraei, S., Mehdizadeh, L., & Moghaddam, M. (2021). Seed Priming with Putrescine Alleviated Salinity Stress During Germination and Seedling Growth of Medicinal Pumpkin. Journal of Soil Science and Plant Nutrition, 1-11.
  • Food and Agriculture Organization (2021, 19 Ekim) Erişim adresi https://www.fao.org/faostat/en/#data/QCL Ghassemi F., Jakeman A.J., Nix H.A. (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CAB international, Walloongford, UK
  • Ghimire, B., Timsina, D., & Nepal, J. (2015). Analysis of chlorophyll content and its correlation with yield attributing traits on early varieties of maize (Zea mays L.). Journal of Maize Research and Development, 1(1), 134-145.
  • Gulluoglu, L., H. Bakal, B. Onat, A. El Sabagh, and H. Arioglu. 2016. Characterization of peanut (Arachis hypogaea L.) seed oil and fatty acids composition under different growing season under Mediterranean environment. Journal of Experimental Biology and Agricultural Sciences. http://dx.doi.org/10.18006/2016, 4(5S):564-571
  • Hasthanasombut S, Supaibulwatana K, Mii M, Nakamura I (2011) Genetic manipulation of Japonica rice using the OsBADH1 gene from Indica rice to improve salinity tolerance. Plant Cell Tiss Organ Cult 104: 79–89.
  • Hirabayashi Y., Mahendran R., Koirala S., Konoshima L., Yamazaki D., Watanabe S., Kim H., Kanae S. (2013) Global flood risk under climate change. Nature Climate Change, 3, 816–821.
  • Kandel, B. P. (2020). Spad value varies with age and leaf of maize plant and its relationship with grain yield. BMC Research Notes, 13(1), 1-4.
  • Kurt, C., Bakal, H., Gulluoglu, L., & Arioglu, H. (2017). The effect of twin row planting pattern and plant population on yield and yield components of peanut (Arachis hypogaea L.) at main crop planting in Cukurova region of Turkey. Turkish Journal of Field Crops, 22(1), 24-31.
  • Maathuis FJM, Ahmad I, Patishtan J (2014) Regulation of Na+ fluxes in plants. Front Plant Sci 5:467–477. https://doi.org/10.3389/fpls.2014.00467
  • Maiti, D., Das, D. K., Karak, T., & Banerjee, M. (2004). Management of nitrogen through the use of leaf color chart (LCC) and soil plant analysis development (SPAD) or chlorophyll meter in rice under irrigated ecosystem. TheScientificWorldJOURNAL, 4, 838-846.
  • Martin J., Fackler P.L., Nichols J.D., Lubow B.C., Eaton M.J., Runge M.C., Stith B.M., Langtimm C.A. (2011) Structured decision making as a proactive approach to dealing with sea level rise in Florida. Climatic Change, 107, 185– 202.
  • Martinez-Beltran J, Manzur CL (2005) Overview of salinity problems in the world and FAO strategies to address the problem. In: Proceedings of the International Salinity Forum, April 2005; Riverside, California, USA. sf. 311–313.
  • Pál, M., Szalai, G., & Janda, T. (2015). Speculation: polyamines are important in abiotic stress signaling. Plant Science, 237, 16-23.
  • Parvin, S.; Lee, O.R.; Sathiyaraj, G.; Khorolragchaa, A.; Kim, Y.-J.; Yang, D.-C. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene 2014, 537, 70–78.
  • Paul D, Dineshkumar N, Nair S, 2006. Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World Journal of Microbiology and Biotechnology, 22 (Suppl 4): 369-374.
  • Sarkar, T., Thankappan, R., Kumar, A., Mishra, G. P., & Dobaria, J. R. (2014). Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One, 9(12), e110507.
  • Sharma, M. L. (1999). Polyamine metabolism under abiotic stress in higher plants: salinity, drought and high temperature. Physiology and Molecular Biology of Plants, 5, 103-113.
  • Sheokand, S., Kumari, A., & Sawhney, V. (2008). Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiology and Molecular Biology of Plants, 14(4), 355-362.
  • Shoba D, Manivannan N, Vindhiyavarman P, Nigam SN (2012) SSR markers associated for late leaf spot disease resistance by bulked segregant analysis in groundnut (Arachis hypogaea L.). Euphytica 188: 265–272.
  • Zhang JL, Shi H (2013) Physiological and molecular mechanisms of plant salt tolerance. Photosynth Res 115(1):1–22. https://doi.org/10.1007/s11120-013-9813-6
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Abdurrahim Yılmaz 0000-0001-9991-1792

Vahdettin Çiftçi 0000-0002-0440-5959

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 31

Cite

APA Yılmaz, A., & Çiftçi, V. (2021). Pütresin’in Tuz Stresi Altında Yetişen Yer Fıstığı (Arachis hypogaea L.)’na Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(31), 562-567. https://doi.org/10.31590/ejosat.1013051