Research Article
BibTex RIS Cite

The Characterization of Silver Nanoparticles Synthesized From Prunus spinosa Fruit and Determination of Antimicrobial Effects on Some Food Pathogens

Year 2021, Issue: 32, 298 - 305, 31.12.2021
https://doi.org/10.31590/ejosat.1040082

Abstract

Bu çalışmada, gümüş nanopartiküller (AgNP'ler) Prunus spinosa (PS) meyve özütü kullanılarak kolay, düşük maliyetli ve çevre dostu bir şekilde sentezlendi. Ultraviyole (UV)-görünür Spektrofotometre analiz verilerine göre, nanokristaller 438.3 nm'de karakteristik bir tepe noktası gösterdi. Alan Emisyon Taramalı Elektron Mikroskobu (FE-SEM), Transmisyon Elektron Mikroskobu (TEM) ve Atomik Güç Mikroskopisi (AFM) analizleri, biyosentezlenen AgNP'lerin morfolojik yapılarının küresel olduğunu ortaya koydu. XRD analizi sonuçlarına göre AgNP'lerin kristal yapılarının kübik olduğu belirlendi. Nanopartiküllerin boyutu, Debye-Scherrer denklemi ile 29,34 nm olarak hesaplandı. Sentezlenen nanomalzemenin zeta boyutu 117.4 nm olarak ölçülmüştür. AgNP’lerin gıda patojenleri olan Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC25922 ve Candida albicans üzerindeki inhibisyon etkileri Minimum İnhibitör Konsantrasyon (MİK) yöntemiyle ortaya konuldu.

References

  • Abu-Elghait, M., Hasanin, M., Hashem, A. H., & Salem, S. S. (2021). Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility. International Journal of Biological Macromolecules, 175, 294-303. doi:10.1016/j.ijbiomac.2021.02.04.
  • Akintelu, S.A. & Folorunso, A.S. (2020). A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. BioNanoSci. 10, 848-863. https://doi.org/10.1007/s12668-020-00774-6.
  • Aktepe, N. (2021). Gümüş nano materyallerin sentezi, karakterizasyonu ve antimikrobiyal aktiviteleri. DÜMF Mühendislik Dergisi, 12(2), 347-354.
  • Aktepe, N., Baran, A., Atalar, M. N., Baran, M. F., Düz, M. Z., Yavuz, Ö., İrtegün Kandemir, S. & Kavak, D. E. (2021). Biosynthesis of Black Mulberry Leaf Extract and Silver NanoParticles (AgNPs): Characterization, Antimicrobial and Cytotoxic Activity Applications. MAS Journal of Applied Sciences, 8(8), 685–700. https://doi.org/10.52520/masjaps.120
  • Aktepe, N. & Baran, A. (2021b). Fast and low cost biosynthesis of AgNPs with almond leaves: medical applications with biocompatible structures. Progress in Nutrition, 23(3), e2021271.
  • Alkhalaf, M.I., Hussein, R.H. & Hamza, A. (2020) Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci, 27(9), 2410-2419.
  • Aromal, S.A., Vidhu, V.K., Philip, D. (2012). Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochim Acta A Mol Biomol Spectrosc, 85(1), 99-104.
  • Aygün, A., Özdemir, S., Gülcan, M., Cellat, K. & Şen, F. (2020). Synthesis and Characterization of Reishi Mushroom-mediated Green Synthesis of Silver Nanoparticles for the Biochemical Applications. Journal of Pharmaceutical and Biomedical Analysis, 178, 112970. doi: 10.1016/j.jpba.2019.112970
  • Atalar, M. N., Baran, A., Baran, M. F., Keskin, C., Aktepe, N., Yavuz, Ö. & İrtegun Kandemir, S. (2021). Economic fast synthesis of olive leaf extract and silver nanoparticles and biomedical applications. In Particulate Science and Technology. 1–9. doi: 10.1080/02726351.2021.1977443.
  • Badeggi, U.M., Ismail, E., Adeloye, A.O., Botha, S., Badmus, J.A., Marnewick, J.L., Cupido, J.N., Hussein & A. A. (2020). Green Synthesis of Gold Nanoparticles Capped with Procyanidins from Leucosidea sericea as Potential Antidiabetic and Antioxidant Agents. Biomolecules, 10(3), 452. doi: 10.3390/biom10030452.
  • Bandeira, M., Giovanela. M., Roesch-Ely, M., Devine, D.M. & da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15, 100223. doi: 10.1016/j.scp.2020.100223.
  • Baran, A. (2021). Gümüş nano malzemelerin çevre dostu, hızlı sentezi ve biomedikal uygulamaları. DÜMF Mühendislik Dergisi, 12(2), 329-336.
  • Baran, A., Baran, M. F., Keskin, C., Kandemir, S. I., Valiyeva, M., Mehraliyeva, S., Khalilov, R. & Eftekhari, A. (2021). Ecofriendly/Rapid Synthesis of Silver Nanoparticles Using Extract of Waste Parts of Artichoke (Cynara scolymus L.) and Evaluation of their Cytotoxic and Antibacterial Activities. Journal of Nanomaterials. 1–10). doi: 10.1155/2021/2270472.
  • Baran, M. F., Acay, H. & Keskin, C. (2020). Determination of Antimicrobial and Toxic Metal Removal Activities of Plant‐Based Synthesized ( Capsicum annuum L. Leaves), Ecofriendly, Gold Nanomaterials. Global Challenges, 4(5), 1900104. doi: 10.1002/gch2.201900104 .
  • Baran, M. F. (2019a). Synthesis, Characterization and Investigation of Antimicrobial Activity Of Silver Nanoparticles From Cydonıi oblonga Leaf. Applied Ecology and Envirionmental Research, 17(2): 2583-2592. doi: 10.15666/aeer/1702_25832592.
  • Baran, M. F. (2019b). Synthesis, Characterization And Investigation of Antimicrobial Activity of Silver Nanoparticles From Cydonia oblonga leaf. Applied Ecology and Environmental Research, 17(2), 2583-2592.
  • Baran, M. F., Acay, H., Keskin, C., Aygün, H. & Yıldırım, A. (2019). Synthesis and Determination of Antimicrobial Properties of TiO2NPs Using Nigella sativa L. Extract. Euroasia Journal of Mathematics, Engineering, Natural Medical Sciences, 7, 69-75.
  • Baran, M.F., Koç, A. & Uzan, S. (2018). (Synthesis, Characterization and Antimicrobial Applications of Silver Nanoparticles (AgNPs) with Kenger (Gundelia tournefortii) Leaf). International Journal on Mathematic, Engineering and Natural Sciences, 5, 44-52.
  • Chellamuthu, C., Balakrishnan, R., Patel, P., Shanmuganathan, R., Pugazhendhi, A. & Ponnuchamy, K. (2019). Gold nanoparticles using red seaweed Gracilaria verrucosa: Green synthesis, characterization and biocompatibility studies. Process Biochemistry, 80: 58-63. doi: 10.1016/j.procbio.2019.02.009.
  • Demir, F., Doğan, H., Özcan, M. & Haciseferoğullari, H. (2002). Nutritional and physical properties of hackberry (Celtis australis L.). Journal of Food Engineering, 54(3), 241-247. doi:10.1016/s0260-8774(01)00210-2.
  • Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., Mcgaw, M., Marchant, R. & Banat, I. M. (2016). Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett, 38(6), 1015-1019.
  • Eren, A. & Baran, M. F. (2019). Green Synthesis, Characterization and Antimicrobal Activity of Silver Nanoparticles (AgNPs) From Maize (Zea Mays L.). Appl Ecol Environ Res, 17(2), 4097-4105.
  • Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Zhang, X. & Kennedy, L. J. (2020). Green synthesis of nickel oxide nanoparticles using Solanum trilobatum extract for cytotoxicity, antibacterial and photocatalytic studies. Surfaces and Interfaces, 20, 100553. doi:10.1016/j.surfin.2020.100553.
  • Fatema, S., Shirsat, M., Farooqui, M. & Arif, P.M. (2019). Biosynthesis of Silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. International Journal of Nano Dimension, 10(2), 163-168.
  • Garibo, D., Borbón-Nuñez, H.A., de León, J.N.D. et al. (2020). Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci Rep, 10, 12805. doi: 10.1038/s41598-020-69606-7.
  • Ghaedi, M., Yousefinejad, M., Safarpoor, M., Khafri, H. Z. & Purkait, M. K. (2015). Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. Journal of Industrial and Engineering Chemistry, 31, 167-172. doi: 10.1016/j.jiec.2015.06.020
  • Hamouda, T. & Baker, J. (2000). Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. J Appl Microbiol, 89(3), 397-403.
  • Hatipoğlu, A. (2021a). Green synthesis of gold nanoparticles from Prunus cerasifera pissardii nigra leaf and their antimicrobial activities on some food pathogens. Progr Nutr 23(3), e2021241. doi: 10.23751/pn.v23i3.11947.
  • Hatipoğlu, A. (2021b). Rapid green synthesis of gold nanoparticles: synthesis, characterization, and antimicrobial activities. Progress in Nutrition, 23(3), e2021242. https://doi.org/10.23751/pn.v23i3.11988
  • Hatipoğlu, A. (2021c). Abelmoschus esculentus yaprağı kullanılarak gümüş nanopartiküllerin yeşil sentezi ve bazı gıda patojenleri üzerindeki antimikrobiyal etkileri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22(2), 239-246. https://doi.org/10.17474/artvinofd.971246
  • Hemmati, S., Rashtiani, A., Zangeneh, M. M., Mohammadi, P., Zangeneh, A. & Veisi, H. (2018). Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens, Polyhedron, 158, 8-14. doi: 10.1016/j.poly.2018.10.049
  • Hitosugi, M., Hamada, K. & Misaka, K. (2015). Effects of Bacillus subtilis var. natto products on symptoms caused by blood flow disturbance in female patients with lifestyle diseases. Int J Gen Med, 8, 41-46.
  • Hoseinnejad, M., Jafari, S. M. & Katouzian, I. (2017). Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol, 44(2), 161-181.
  • Huang, X., Wang, R., Jiao, T., Zou, G., Zhan, F., Yin, J., Zhang, L., Zhou, J. & Peng, Q. (2019). Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe3O4/ Polymer Nanocomposites by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. ACS Omega, 4, 1897-1906.
  • Iravani, S., Korbekandi, H., Mirmohammadi, S.V. & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385-406.
  • Jamkhande, P. G., Ghule, N. W., Bamer, A. H. & Kalaskar, M.G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174. doi:10.1016/j.jddst.2019.101174.
  • Javaid, A., Oloketuyi, S. F., Khan, M. M. & Khan, F. (2017). Diversity of Bacterial Synthesis of Silver Nanoparticles. BioNanoScience, 8(1), 43-59. doi: 10.1007/s12668-017-0496-x.
  • Jayaprakash, N., Vijaya, J. J., Kaviyarasu, K., Kombaiah, K., Kennedy, L. J., Ramalingam, R. J., Munusamy M. A. & Al-Lohedan, H. A. (2017). Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. Journal of Photochemistry and Photobiology B: Biology, 169, 178-185. doi:10.1016/j.jphotobiol.2017.03.013.
  • Katata-Seru, L., Moremedi, T., Aremu, O. S. & Bahadur, I. (2018). Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli. Journal of Molecular Liquids, 256, 296-304. doi:10.1016/j.molliq.2017.11.093.
  • Keskin, C., Atalar, M. N., Baran, M. F. & Baran, A. (2021). Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Journal of the Institute of Science and Technology .11 (1), 365-375. doi: 10.21597/jist.779169.
  • Kowsalya, E., Mosachristas, K., Balashanmugam, P., Manivasagan, V., Devasena, T. & Jaquline, C.R.I. (2021). Sustainable use of biowaste for synthesis of silver nanoparticles and its incorporation into gelatin-based nanocomposite films for antimicrobial food packaging applications. Journal of Food Process Engineering, 44(3), e13641. https://doi.org/10.1111/jfpe.13641.
  • Kumari, P., Alam, M. & Siddiqi, W. A. (2019). Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustainable Materials and Technologies, 22, e00128.
  • Maity, G. N., Maity, P., Choudhuri, I., Sahoo, G. C., Maity, N., Ghosh, K., Bhattacharyya, N., Dalai, S. & Mondal, S. (2020). Green synthesis, characterization, antimicrobial and cytotoxic effect of silver nanoparticles using arabinoxylan isolated from Kalmegh. International Journal of Biological Macromolecules, 162, 1025-1034.
  • Mohmed, A. A., Saad, E., Fouda, A., Elgamal, M. S. & Salem, S. S. (2017). Extracellular biosynthesis of silver nanoparticles using Aspergillus sp. and evaluation of their antibacterial and cytotoxicity. Journal of Applied Life Sciences International, 11(2), 1-12. doi: 10.9734/JALSI/2017/33491.
  • Molnár, Z., Bódai, V., Szakacs, G., Erdélyi, B., Fogarassy, Z., Sáfrán, G., Varga, T., Kónya, Z., Tóth-Szeles, E., Szűcs, R. & Lagzi, I. (2018). Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Scientific Reports, 8, 3943. doi: 10.1038/s41598-018-22112-3.
  • Monente, C., Bravo, J., Vitas, A.I., Arbillaga, L., De Peñ, M.P. & Cid, C. (2015). Coffee and spent coffee extracts protect against cell mutagens and inhibit growth of food-borne pathogen microorganisms. Journal of Functional Foods, 12, 365-374. doi: 10.1016/j.jff.2014.12.006
  • Mostafa, A. A., Al-Askar, A. A., Almaary, K.S., Dawoud, T. M., Sholkamy, E.N. & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci, 25(2), 361-366.
  • Mousavi, S. M., Hashemi, S. A., Ghasemi, Y., Atapour, A., Amani, A. M., Dashtaki, A. S., Babapoor, A. & Arjmand, O. (2018). Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artificial Cells, Nanomedicine, and Biotechnology, 46, 855-872.
  • Naseer, A., Ali, A., Ali, S., Mahmood, A., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M.I., Ghaffar, A., Abbas, M. & Iqbal, M. (2020). Biogenic and eco-benign synthesis of platinum nanoparticles (Pt NPs) using plants aqueous extracts and biological derivatives: environmental, biological and catalytic applications. Journal of Materials Research and Technology, 9(4), 9093-9107. doi:10.1016/j.jmrt.2020.06.013.
  • Niknejad, F., Nabili, M., Daie Ghazvini, R. & Moazeni, M. (2015). Green synthesis of silver nanoparticles: Advantages of the yeast Saccharomyces cerevisiae model. Current medical mycology, 1(3), 17-24. doi: 10.18869/acadpub.cmm.1.3.17
  • Pallela, P. N. V. K., Ummey, S., Ruddaraju, L.K., Pammi, S. V. N. & Yoon, S.G. (2018). Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microbial Pathogenesis, 124, 63-69.
  • Paosen, S., Saising, J., Wira Septama, A. & Piyawan Voravuthikunchai, S. (2017). Green synthesis of silver nanoparticles using plants from Myrtaceae family and characterization of their antibacterial activity. Materials Letters, 209, 201–206. doi:10.1016/j.matlet.2017.07.102.
  • Parial, D., Patra, H. K., Dasgupta, A. K. & Pal, R. (2012). Screening of different algae for green synthesis of gold nanoparticles. European Journal of Phycology, 47(1), 22-29. doi:10.1080/09670262.2011.653406.
  • Pugazhendhi, S., Palanisamy, P. K. & Jayavel, R. (2018). Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications. Opt Mater, 79: 457-63.
  • Saravanan, A., Kumar, P. S., Karishma, S., Vo, D.-V. N., Jeevanantham, S., Yaashikaa, P. R. & George, C. S. (2021). A Review on Biosynthesis of Metal Nanoparticles and its Environmental Applications. Chemosphere, 264 (2), 128580. doi:10.1016/j.chemosphere.2020.12.
  • Selim, Y. A., Azb, M. A., Ragab, I. & Abd El-Azim, M. H. M. (2020). Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities. Sci Rep, 10, 3445. doi: 10.1038/s41598-020-60541-1.
  • Singh, A. K., Tiwari, R., Kumar, V., Singh, P., Riyazat Khadim, S. K., Tiwari, A., Srivastaka, V., Hasan, S.H. & Asthana, R. K. (2017). Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential. Journal of Photochemistry and Photobiology B: Biology, 166, 202-211.
  • Swamy, M. K., Akhtar, M. S ., Mohanty, S. K. & Sinniah, U. R. (2015). Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta - Part A Mol Biomol Spectrosc 151, 939-944.
  • Tamboli, D. P. & Lee, D. S. (2013). Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. J Hazard Mater, 260, 878-84.
  • Umaz, A., Koç, A., Baran, M. F., Keskin, C. & Atalar, M. N. (2019). Hypericum Triquetrifolium Turra Bitkisinden Gümüş Nanopartiküllerin Sentezi, Karekterizasyonu ve Antimikrobial Etkinliğinin İncelenmesi. Journal of the Institute of Science and Technology, 9 (3), 1467-1475. doi: 10.21597/jist.533115.
  • Xiong, Y., Huang, L., Mahmud, S., Yang, F. & Liu, H. (2020). Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes. Chinese Journal of Chemical Engineering, 28(5), 1334-1343. doi:10.1016/j.cjche.2020.02.014.
  • Yadi, M., Mostafavi, E., Saleh, B., Davaran, S., Aliyeva, I., Khalilov, R., Nikzamir, M., Nikzamir, N., Akbarzadeh, A., Panahi, Y. & Milani, M. (2018). Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artificial Cells, Nanomedicine, and Biotechnology, 46, 336-343.
  • Yang, S. C., Lin, C. H., Aljuffali, I. A. & Fang, J.-Y. (2017). Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Archives of Microbiology, 199, 811–825. doi: 10.1007/s00203-017-1393-y

The Characterization of Silver Nanoparticles Synthesized From Prunus spinosa Fruit and Determination of Antimicrobial Effects on Some Food Pathogens

Year 2021, Issue: 32, 298 - 305, 31.12.2021
https://doi.org/10.31590/ejosat.1040082

Abstract

In this study, silver nanoparticles (AgNPs) were synthesized using Prunus spinosa (PS) fruit extract in an easy, low-cost and environmentally friendly way. According to the Ultraviolet (UV)-visible Spectrophotometer analysis data, the nanocrystals showed a characteristic peak at 438.3 nm. Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM), and Atomic Force Microscopy (AFM) analyzes revealed that the morphological structures of the biosynthesized AgNPs were spherical. According to the results of XRD analysis, it was determined that the crystal structures of AgNPs were cubic. The size of the nanoparticles was calculated as 29,34 nm by the Debye-Scherrer equation. The zeta size of the synthesized nanomaterial was measured as 117.4 nm. Inhibitory effects of AgNPs on food pathogens Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus ATCC 29213, Escherichia coli ATCC25922 and Candida albicans were revealed by the Minimum Inhibitory Concentration (MIC) method.
Keywords: AFM, Food pathogens, FT-IR, TEM, XRD.

References

  • Abu-Elghait, M., Hasanin, M., Hashem, A. H., & Salem, S. S. (2021). Ecofriendly novel synthesis of tertiary composite based on cellulose and myco-synthesized selenium nanoparticles: Characterization, antibiofilm and biocompatibility. International Journal of Biological Macromolecules, 175, 294-303. doi:10.1016/j.ijbiomac.2021.02.04.
  • Akintelu, S.A. & Folorunso, A.S. (2020). A review on green synthesis of zinc oxide nanoparticles using plant extracts and its biomedical applications. BioNanoSci. 10, 848-863. https://doi.org/10.1007/s12668-020-00774-6.
  • Aktepe, N. (2021). Gümüş nano materyallerin sentezi, karakterizasyonu ve antimikrobiyal aktiviteleri. DÜMF Mühendislik Dergisi, 12(2), 347-354.
  • Aktepe, N., Baran, A., Atalar, M. N., Baran, M. F., Düz, M. Z., Yavuz, Ö., İrtegün Kandemir, S. & Kavak, D. E. (2021). Biosynthesis of Black Mulberry Leaf Extract and Silver NanoParticles (AgNPs): Characterization, Antimicrobial and Cytotoxic Activity Applications. MAS Journal of Applied Sciences, 8(8), 685–700. https://doi.org/10.52520/masjaps.120
  • Aktepe, N. & Baran, A. (2021b). Fast and low cost biosynthesis of AgNPs with almond leaves: medical applications with biocompatible structures. Progress in Nutrition, 23(3), e2021271.
  • Alkhalaf, M.I., Hussein, R.H. & Hamza, A. (2020) Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci, 27(9), 2410-2419.
  • Aromal, S.A., Vidhu, V.K., Philip, D. (2012). Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochim Acta A Mol Biomol Spectrosc, 85(1), 99-104.
  • Aygün, A., Özdemir, S., Gülcan, M., Cellat, K. & Şen, F. (2020). Synthesis and Characterization of Reishi Mushroom-mediated Green Synthesis of Silver Nanoparticles for the Biochemical Applications. Journal of Pharmaceutical and Biomedical Analysis, 178, 112970. doi: 10.1016/j.jpba.2019.112970
  • Atalar, M. N., Baran, A., Baran, M. F., Keskin, C., Aktepe, N., Yavuz, Ö. & İrtegun Kandemir, S. (2021). Economic fast synthesis of olive leaf extract and silver nanoparticles and biomedical applications. In Particulate Science and Technology. 1–9. doi: 10.1080/02726351.2021.1977443.
  • Badeggi, U.M., Ismail, E., Adeloye, A.O., Botha, S., Badmus, J.A., Marnewick, J.L., Cupido, J.N., Hussein & A. A. (2020). Green Synthesis of Gold Nanoparticles Capped with Procyanidins from Leucosidea sericea as Potential Antidiabetic and Antioxidant Agents. Biomolecules, 10(3), 452. doi: 10.3390/biom10030452.
  • Bandeira, M., Giovanela. M., Roesch-Ely, M., Devine, D.M. & da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15, 100223. doi: 10.1016/j.scp.2020.100223.
  • Baran, A. (2021). Gümüş nano malzemelerin çevre dostu, hızlı sentezi ve biomedikal uygulamaları. DÜMF Mühendislik Dergisi, 12(2), 329-336.
  • Baran, A., Baran, M. F., Keskin, C., Kandemir, S. I., Valiyeva, M., Mehraliyeva, S., Khalilov, R. & Eftekhari, A. (2021). Ecofriendly/Rapid Synthesis of Silver Nanoparticles Using Extract of Waste Parts of Artichoke (Cynara scolymus L.) and Evaluation of their Cytotoxic and Antibacterial Activities. Journal of Nanomaterials. 1–10). doi: 10.1155/2021/2270472.
  • Baran, M. F., Acay, H. & Keskin, C. (2020). Determination of Antimicrobial and Toxic Metal Removal Activities of Plant‐Based Synthesized ( Capsicum annuum L. Leaves), Ecofriendly, Gold Nanomaterials. Global Challenges, 4(5), 1900104. doi: 10.1002/gch2.201900104 .
  • Baran, M. F. (2019a). Synthesis, Characterization and Investigation of Antimicrobial Activity Of Silver Nanoparticles From Cydonıi oblonga Leaf. Applied Ecology and Envirionmental Research, 17(2): 2583-2592. doi: 10.15666/aeer/1702_25832592.
  • Baran, M. F. (2019b). Synthesis, Characterization And Investigation of Antimicrobial Activity of Silver Nanoparticles From Cydonia oblonga leaf. Applied Ecology and Environmental Research, 17(2), 2583-2592.
  • Baran, M. F., Acay, H., Keskin, C., Aygün, H. & Yıldırım, A. (2019). Synthesis and Determination of Antimicrobial Properties of TiO2NPs Using Nigella sativa L. Extract. Euroasia Journal of Mathematics, Engineering, Natural Medical Sciences, 7, 69-75.
  • Baran, M.F., Koç, A. & Uzan, S. (2018). (Synthesis, Characterization and Antimicrobial Applications of Silver Nanoparticles (AgNPs) with Kenger (Gundelia tournefortii) Leaf). International Journal on Mathematic, Engineering and Natural Sciences, 5, 44-52.
  • Chellamuthu, C., Balakrishnan, R., Patel, P., Shanmuganathan, R., Pugazhendhi, A. & Ponnuchamy, K. (2019). Gold nanoparticles using red seaweed Gracilaria verrucosa: Green synthesis, characterization and biocompatibility studies. Process Biochemistry, 80: 58-63. doi: 10.1016/j.procbio.2019.02.009.
  • Demir, F., Doğan, H., Özcan, M. & Haciseferoğullari, H. (2002). Nutritional and physical properties of hackberry (Celtis australis L.). Journal of Food Engineering, 54(3), 241-247. doi:10.1016/s0260-8774(01)00210-2.
  • Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., Mcgaw, M., Marchant, R. & Banat, I. M. (2016). Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnol Lett, 38(6), 1015-1019.
  • Eren, A. & Baran, M. F. (2019). Green Synthesis, Characterization and Antimicrobal Activity of Silver Nanoparticles (AgNPs) From Maize (Zea Mays L.). Appl Ecol Environ Res, 17(2), 4097-4105.
  • Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Zhang, X. & Kennedy, L. J. (2020). Green synthesis of nickel oxide nanoparticles using Solanum trilobatum extract for cytotoxicity, antibacterial and photocatalytic studies. Surfaces and Interfaces, 20, 100553. doi:10.1016/j.surfin.2020.100553.
  • Fatema, S., Shirsat, M., Farooqui, M. & Arif, P.M. (2019). Biosynthesis of Silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. International Journal of Nano Dimension, 10(2), 163-168.
  • Garibo, D., Borbón-Nuñez, H.A., de León, J.N.D. et al. (2020). Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci Rep, 10, 12805. doi: 10.1038/s41598-020-69606-7.
  • Ghaedi, M., Yousefinejad, M., Safarpoor, M., Khafri, H. Z. & Purkait, M. K. (2015). Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. Journal of Industrial and Engineering Chemistry, 31, 167-172. doi: 10.1016/j.jiec.2015.06.020
  • Hamouda, T. & Baker, J. (2000). Antimicrobial mechanism of action of surfactant lipid preparations in enteric Gram-negative bacilli. J Appl Microbiol, 89(3), 397-403.
  • Hatipoğlu, A. (2021a). Green synthesis of gold nanoparticles from Prunus cerasifera pissardii nigra leaf and their antimicrobial activities on some food pathogens. Progr Nutr 23(3), e2021241. doi: 10.23751/pn.v23i3.11947.
  • Hatipoğlu, A. (2021b). Rapid green synthesis of gold nanoparticles: synthesis, characterization, and antimicrobial activities. Progress in Nutrition, 23(3), e2021242. https://doi.org/10.23751/pn.v23i3.11988
  • Hatipoğlu, A. (2021c). Abelmoschus esculentus yaprağı kullanılarak gümüş nanopartiküllerin yeşil sentezi ve bazı gıda patojenleri üzerindeki antimikrobiyal etkileri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22(2), 239-246. https://doi.org/10.17474/artvinofd.971246
  • Hemmati, S., Rashtiani, A., Zangeneh, M. M., Mohammadi, P., Zangeneh, A. & Veisi, H. (2018). Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens, Polyhedron, 158, 8-14. doi: 10.1016/j.poly.2018.10.049
  • Hitosugi, M., Hamada, K. & Misaka, K. (2015). Effects of Bacillus subtilis var. natto products on symptoms caused by blood flow disturbance in female patients with lifestyle diseases. Int J Gen Med, 8, 41-46.
  • Hoseinnejad, M., Jafari, S. M. & Katouzian, I. (2017). Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Crit Rev Microbiol, 44(2), 161-181.
  • Huang, X., Wang, R., Jiao, T., Zou, G., Zhan, F., Yin, J., Zhang, L., Zhou, J. & Peng, Q. (2019). Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe3O4/ Polymer Nanocomposites by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. ACS Omega, 4, 1897-1906.
  • Iravani, S., Korbekandi, H., Mirmohammadi, S.V. & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385-406.
  • Jamkhande, P. G., Ghule, N. W., Bamer, A. H. & Kalaskar, M.G. (2019). Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. Journal of Drug Delivery Science and Technology, 53, 101174. doi:10.1016/j.jddst.2019.101174.
  • Javaid, A., Oloketuyi, S. F., Khan, M. M. & Khan, F. (2017). Diversity of Bacterial Synthesis of Silver Nanoparticles. BioNanoScience, 8(1), 43-59. doi: 10.1007/s12668-017-0496-x.
  • Jayaprakash, N., Vijaya, J. J., Kaviyarasu, K., Kombaiah, K., Kennedy, L. J., Ramalingam, R. J., Munusamy M. A. & Al-Lohedan, H. A. (2017). Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. Journal of Photochemistry and Photobiology B: Biology, 169, 178-185. doi:10.1016/j.jphotobiol.2017.03.013.
  • Katata-Seru, L., Moremedi, T., Aremu, O. S. & Bahadur, I. (2018). Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli. Journal of Molecular Liquids, 256, 296-304. doi:10.1016/j.molliq.2017.11.093.
  • Keskin, C., Atalar, M. N., Baran, M. F. & Baran, A. (2021). Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Journal of the Institute of Science and Technology .11 (1), 365-375. doi: 10.21597/jist.779169.
  • Kowsalya, E., Mosachristas, K., Balashanmugam, P., Manivasagan, V., Devasena, T. & Jaquline, C.R.I. (2021). Sustainable use of biowaste for synthesis of silver nanoparticles and its incorporation into gelatin-based nanocomposite films for antimicrobial food packaging applications. Journal of Food Process Engineering, 44(3), e13641. https://doi.org/10.1111/jfpe.13641.
  • Kumari, P., Alam, M. & Siddiqi, W. A. (2019). Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustainable Materials and Technologies, 22, e00128.
  • Maity, G. N., Maity, P., Choudhuri, I., Sahoo, G. C., Maity, N., Ghosh, K., Bhattacharyya, N., Dalai, S. & Mondal, S. (2020). Green synthesis, characterization, antimicrobial and cytotoxic effect of silver nanoparticles using arabinoxylan isolated from Kalmegh. International Journal of Biological Macromolecules, 162, 1025-1034.
  • Mohmed, A. A., Saad, E., Fouda, A., Elgamal, M. S. & Salem, S. S. (2017). Extracellular biosynthesis of silver nanoparticles using Aspergillus sp. and evaluation of their antibacterial and cytotoxicity. Journal of Applied Life Sciences International, 11(2), 1-12. doi: 10.9734/JALSI/2017/33491.
  • Molnár, Z., Bódai, V., Szakacs, G., Erdélyi, B., Fogarassy, Z., Sáfrán, G., Varga, T., Kónya, Z., Tóth-Szeles, E., Szűcs, R. & Lagzi, I. (2018). Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Scientific Reports, 8, 3943. doi: 10.1038/s41598-018-22112-3.
  • Monente, C., Bravo, J., Vitas, A.I., Arbillaga, L., De Peñ, M.P. & Cid, C. (2015). Coffee and spent coffee extracts protect against cell mutagens and inhibit growth of food-borne pathogen microorganisms. Journal of Functional Foods, 12, 365-374. doi: 10.1016/j.jff.2014.12.006
  • Mostafa, A. A., Al-Askar, A. A., Almaary, K.S., Dawoud, T. M., Sholkamy, E.N. & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci, 25(2), 361-366.
  • Mousavi, S. M., Hashemi, S. A., Ghasemi, Y., Atapour, A., Amani, A. M., Dashtaki, A. S., Babapoor, A. & Arjmand, O. (2018). Green synthesis of silver nanoparticles toward bio and medical applications: review study. Artificial Cells, Nanomedicine, and Biotechnology, 46, 855-872.
  • Naseer, A., Ali, A., Ali, S., Mahmood, A., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M.I., Ghaffar, A., Abbas, M. & Iqbal, M. (2020). Biogenic and eco-benign synthesis of platinum nanoparticles (Pt NPs) using plants aqueous extracts and biological derivatives: environmental, biological and catalytic applications. Journal of Materials Research and Technology, 9(4), 9093-9107. doi:10.1016/j.jmrt.2020.06.013.
  • Niknejad, F., Nabili, M., Daie Ghazvini, R. & Moazeni, M. (2015). Green synthesis of silver nanoparticles: Advantages of the yeast Saccharomyces cerevisiae model. Current medical mycology, 1(3), 17-24. doi: 10.18869/acadpub.cmm.1.3.17
  • Pallela, P. N. V. K., Ummey, S., Ruddaraju, L.K., Pammi, S. V. N. & Yoon, S.G. (2018). Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microbial Pathogenesis, 124, 63-69.
  • Paosen, S., Saising, J., Wira Septama, A. & Piyawan Voravuthikunchai, S. (2017). Green synthesis of silver nanoparticles using plants from Myrtaceae family and characterization of their antibacterial activity. Materials Letters, 209, 201–206. doi:10.1016/j.matlet.2017.07.102.
  • Parial, D., Patra, H. K., Dasgupta, A. K. & Pal, R. (2012). Screening of different algae for green synthesis of gold nanoparticles. European Journal of Phycology, 47(1), 22-29. doi:10.1080/09670262.2011.653406.
  • Pugazhendhi, S., Palanisamy, P. K. & Jayavel, R. (2018). Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications. Opt Mater, 79: 457-63.
  • Saravanan, A., Kumar, P. S., Karishma, S., Vo, D.-V. N., Jeevanantham, S., Yaashikaa, P. R. & George, C. S. (2021). A Review on Biosynthesis of Metal Nanoparticles and its Environmental Applications. Chemosphere, 264 (2), 128580. doi:10.1016/j.chemosphere.2020.12.
  • Selim, Y. A., Azb, M. A., Ragab, I. & Abd El-Azim, M. H. M. (2020). Green Synthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Deverra tortuosa and their Cytotoxic Activities. Sci Rep, 10, 3445. doi: 10.1038/s41598-020-60541-1.
  • Singh, A. K., Tiwari, R., Kumar, V., Singh, P., Riyazat Khadim, S. K., Tiwari, A., Srivastaka, V., Hasan, S.H. & Asthana, R. K. (2017). Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential. Journal of Photochemistry and Photobiology B: Biology, 166, 202-211.
  • Swamy, M. K., Akhtar, M. S ., Mohanty, S. K. & Sinniah, U. R. (2015). Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta - Part A Mol Biomol Spectrosc 151, 939-944.
  • Tamboli, D. P. & Lee, D. S. (2013). Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. J Hazard Mater, 260, 878-84.
  • Umaz, A., Koç, A., Baran, M. F., Keskin, C. & Atalar, M. N. (2019). Hypericum Triquetrifolium Turra Bitkisinden Gümüş Nanopartiküllerin Sentezi, Karekterizasyonu ve Antimikrobial Etkinliğinin İncelenmesi. Journal of the Institute of Science and Technology, 9 (3), 1467-1475. doi: 10.21597/jist.533115.
  • Xiong, Y., Huang, L., Mahmud, S., Yang, F. & Liu, H. (2020). Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes. Chinese Journal of Chemical Engineering, 28(5), 1334-1343. doi:10.1016/j.cjche.2020.02.014.
  • Yadi, M., Mostafavi, E., Saleh, B., Davaran, S., Aliyeva, I., Khalilov, R., Nikzamir, M., Nikzamir, N., Akbarzadeh, A., Panahi, Y. & Milani, M. (2018). Current developments in green synthesis of metallic nanoparticles using plant extracts: a review. Artificial Cells, Nanomedicine, and Biotechnology, 46, 336-343.
  • Yang, S. C., Lin, C. H., Aljuffali, I. A. & Fang, J.-Y. (2017). Current pathogenic Escherichia coli foodborne outbreak cases and therapy development. Archives of Microbiology, 199, 811–825. doi: 10.1007/s00203-017-1393-y
There are 63 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mehmet Nuri Atalar 0000-0003-2993-2605

Ayşe Baran 0000-0002-2317-0489

Abdulkerim Hatipoğlu 0000-0002-1487-1953

M.firat Baran 0000-0002-2317-0489

Ömer Yavuz 0000-0002-5618-2881

Necmettin Aktepe 0000-0003-2192-9049

Cumali Keskin 0000-0003-3758-0654

Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 32

Cite

APA Atalar, M. N., Baran, A., Hatipoğlu, A., Baran, M., et al. (2021). The Characterization of Silver Nanoparticles Synthesized From Prunus spinosa Fruit and Determination of Antimicrobial Effects on Some Food Pathogens. Avrupa Bilim Ve Teknoloji Dergisi(32), 298-305. https://doi.org/10.31590/ejosat.1040082