Research Article
BibTex RIS Cite

Can Emissions Be Reduced Using Latent Heat of Methane in LNG Powered Heavy Vehicles?

Year 2021, Issue: 32, 1066 - 1069, 31.12.2021
https://doi.org/10.31590/ejosat.1041682

Abstract

Liquid natural gas-powered vehicles store liquid natural gas fuel on board. When the gasification of this fuel is maintained, cooling down of the the vehicle cabin can be provided. In this study, the theoretical calculation of the savings that can be achieved if this process is done with an appropriate tool is emphasized. Since diesel fuel is used in heavy vehicles, diesel is taken as reference fuel in the calculations. How much methane is needed by the heavy vehicles that operate at various consumption values is calculated fist, then how much LNG should be evaporated for this need is found, and then, what amount of cooling this evaporating LNG could provide is computed. The results are presented in tabular form. It is seen that the proposed system can provide fuel savings with sufficient cooling, and therefore reduce emissions, especially in the vehicles mentioned.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Akar, M.A., Kekilli, E., Bas, O., Yildizhan, S., Serin, H. and Ozcanli, M., (2018) “Hydrogen enriched waste oil biodiesel usage in compression ignition engine”, International Journal of Hydrogen Energy, 43, 38, 18046-18052.
  • Cengel, Y.A. and Boles, M.A., (2005) “Thermodynamics: An Engineering Approach”, 5th ed., McGraw-Hill, New York.
  • Ciniviz, M. and Köse, H., (2011) "The use of hydrogen in internal combustion engine: a review". International Journal of Automotive Engineering and Technologies, 1. Deng, S., Jin, H., Cai, R., Lin, R., (2004) “Novel cogeneration power system with liquefied natural gas (LNG) cryogenic exergy utilization”, Energy, 29, 4, 497–512.
  • Dincer, I., (2007) “Environmental and sustainability aspects of hydrogen and fuel cell systems”, International Journal of Energy Research, 31, 1, 29-55.
  • Dispenza, C., Dispenza, G., La Rocca, V., Panno, G., (2009a) “Exergy recovery during LNG regasification: electric energy production–Part one”, Appl Therm Eng, 29, 2, 380–387.
  • Dispenza, C., Dispenza, G., La Rocca, V., Panno, G., (2009b) “Exergy recovery during LNG regasification: electric energy production – part two”, Appl Therm Eng, 29, 2, 388–399.
  • Fayazbakhsh M.A. and Bahrami, M., “Comprehensive Modeling of Vehicle Air Conditioning Loads Using Heat Balance Method”, SAE International, 2013-01-1507.
  • Gendebien, S., Parthoens, A., Lemort, V., (2019) “Investigation of a single room ventilation heat recovery exchanger under frosting conditions: Modeling, experimental validation and operating strategies evaluation”, Energy and Buildings, 186, 1-16.
  • Jan, S., Ireneusz, S., (2009) “Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity”, Energy, 34, 7, 827–837.
  • Javani, N., Dincer, I., Naterer, G.F., (2012) “Thermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles”, Energy, 46, 1, 109-116
  • Khayyam, H., (2013) “Adaptive intelligent control of vehicle air conditioning system”, Applied Thermal Engineering, 51, 1154-1161.
  • Lambert, M.A., Jones, B.J., (2006) “Automotive adsorption air conditioner powered by exhaust heat. Part1: conceptual and embodiment design”, Journal of Automobile Engineering, 220, 959-972.
  • Linder, M., Mertz, R., Laurien, E., (2010) “Experimental results of a compact thermally driven cooling system based on metal hydrides”, International Journal of Hydrogen Energy, 35, 14, 7623-7632.
  • Liu, Y., Guo, K., (2011) “A novel cryogenic power cycle for LNG cold energy recovery”, Energy, 36, 5, 2828–2833.
  • Marachlian, J., Benelmir, R., El Bakkali, A., Olivier, G., (2011) “Exergy based simulation model for vehicle HVAC operation”, Applied Thermal Engineering, 31, 5, 696-700.
  • Meier, K., Kurtz, C., Weckerle, C., Hubner, M., Bürger, I., (2018) “Air-conditioning system for vehicles with on-board hydrogen”, Applied Thermal Engineering, 129, 1150–1159.
  • Pacheco, F.A., Martins, M.E.S., Zhao, H., (2013) “New European Drive Cycle (NEDC) simulation of a passenger car with a HCCI engine: Emissions and fuel consumption results”, Fuel, 111, 733-739.
  • Popov, D., Fikiin, K., Stankov, B., Alvarez, G., Youbi-Idrissi, M., Damas, A., Evans, J., Brown, T., (2019) “Cryogenic Heat Exchangers for Process Cooling and Renewable Energy Storage: A Review”, Applied Thermal Engineering.
  • Randaxhe, F., Lemort, V., Lebrun, J., (2015) “Global Optimization of the Production and the Distribution System for Typical European HVAC Systems”, Energy Procedia, 78, 2452-2457.
  • Ruth, D.W., (1975) “Simulation of modelling of automobile comfort cooling requirements”, ASHRAE Journals, 53-55.
  • Tüccar, G., Tosun, E., Özcanlı, M. and Aydın, K., (2013) "Possibility of Turkey to transit Electric Vehicle-based transportation", International Journal of Automotive Engineering and Technologies 2: 64-69.
  • Welstand, J., Haskew, H., Gunst, R., and Bevilacqua, O., “Evaluation of the Effects of Air Conditioning Operation and Associated Environmental Conditions on Vehicle Emissions and Fuel Economy,” SAE Technical Paper 2003-01-2247.

LNG Yakıtlı Ağır Vasıtalarda Methanın Gizli Isısını Kullanarak Emisyonlar Düşürülebilir mi?

Year 2021, Issue: 32, 1066 - 1069, 31.12.2021
https://doi.org/10.31590/ejosat.1041682

Abstract

Sıvılaştırılmış doğal gazla çalışan araçlar, sıvılaştırılmış doğal gaz yakıtını depolarlar. Bu yakıtın gazlaştırılması sağlandığında, taşıt kabininin soğutulması sağlanabilecektir. Bu çalışmada, bu işlemin uygun bir araç ile yapılması durumunda elde edilebilecek tasarrufların teorik olarak hesaplanması üzerinde durulmuştur. Ağır vasıtalarda dizel yakıtı kullanıldığı için hesaplamalarda dizel referans yakıt olarak alınmıştır. Öncelikle çeşitli tüketim değerinde çalışan ağır vasıtaların ne kadar metan yakacakları hesaplanmış, sonra bunun için ne kadar LNG buharlaşması gerektiği hesaplanmış ve bu buharlaşan LNG'nin hangi miktarda soğutma sağlayabileceği bulunmuştur. Sonuçlar tablo halinde sunulmuştur. Önerilen sistemin özellikle belirtilen taşıtlarda yeterli bir soğutma ile yakıt tasarrufu sağlayabileceği dolayısıyla da emisyonları azaltabileceği görülmektedir.

Project Number

-

References

  • Akar, M.A., Kekilli, E., Bas, O., Yildizhan, S., Serin, H. and Ozcanli, M., (2018) “Hydrogen enriched waste oil biodiesel usage in compression ignition engine”, International Journal of Hydrogen Energy, 43, 38, 18046-18052.
  • Cengel, Y.A. and Boles, M.A., (2005) “Thermodynamics: An Engineering Approach”, 5th ed., McGraw-Hill, New York.
  • Ciniviz, M. and Köse, H., (2011) "The use of hydrogen in internal combustion engine: a review". International Journal of Automotive Engineering and Technologies, 1. Deng, S., Jin, H., Cai, R., Lin, R., (2004) “Novel cogeneration power system with liquefied natural gas (LNG) cryogenic exergy utilization”, Energy, 29, 4, 497–512.
  • Dincer, I., (2007) “Environmental and sustainability aspects of hydrogen and fuel cell systems”, International Journal of Energy Research, 31, 1, 29-55.
  • Dispenza, C., Dispenza, G., La Rocca, V., Panno, G., (2009a) “Exergy recovery during LNG regasification: electric energy production–Part one”, Appl Therm Eng, 29, 2, 380–387.
  • Dispenza, C., Dispenza, G., La Rocca, V., Panno, G., (2009b) “Exergy recovery during LNG regasification: electric energy production – part two”, Appl Therm Eng, 29, 2, 388–399.
  • Fayazbakhsh M.A. and Bahrami, M., “Comprehensive Modeling of Vehicle Air Conditioning Loads Using Heat Balance Method”, SAE International, 2013-01-1507.
  • Gendebien, S., Parthoens, A., Lemort, V., (2019) “Investigation of a single room ventilation heat recovery exchanger under frosting conditions: Modeling, experimental validation and operating strategies evaluation”, Energy and Buildings, 186, 1-16.
  • Jan, S., Ireneusz, S., (2009) “Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity”, Energy, 34, 7, 827–837.
  • Javani, N., Dincer, I., Naterer, G.F., (2012) “Thermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles”, Energy, 46, 1, 109-116
  • Khayyam, H., (2013) “Adaptive intelligent control of vehicle air conditioning system”, Applied Thermal Engineering, 51, 1154-1161.
  • Lambert, M.A., Jones, B.J., (2006) “Automotive adsorption air conditioner powered by exhaust heat. Part1: conceptual and embodiment design”, Journal of Automobile Engineering, 220, 959-972.
  • Linder, M., Mertz, R., Laurien, E., (2010) “Experimental results of a compact thermally driven cooling system based on metal hydrides”, International Journal of Hydrogen Energy, 35, 14, 7623-7632.
  • Liu, Y., Guo, K., (2011) “A novel cryogenic power cycle for LNG cold energy recovery”, Energy, 36, 5, 2828–2833.
  • Marachlian, J., Benelmir, R., El Bakkali, A., Olivier, G., (2011) “Exergy based simulation model for vehicle HVAC operation”, Applied Thermal Engineering, 31, 5, 696-700.
  • Meier, K., Kurtz, C., Weckerle, C., Hubner, M., Bürger, I., (2018) “Air-conditioning system for vehicles with on-board hydrogen”, Applied Thermal Engineering, 129, 1150–1159.
  • Pacheco, F.A., Martins, M.E.S., Zhao, H., (2013) “New European Drive Cycle (NEDC) simulation of a passenger car with a HCCI engine: Emissions and fuel consumption results”, Fuel, 111, 733-739.
  • Popov, D., Fikiin, K., Stankov, B., Alvarez, G., Youbi-Idrissi, M., Damas, A., Evans, J., Brown, T., (2019) “Cryogenic Heat Exchangers for Process Cooling and Renewable Energy Storage: A Review”, Applied Thermal Engineering.
  • Randaxhe, F., Lemort, V., Lebrun, J., (2015) “Global Optimization of the Production and the Distribution System for Typical European HVAC Systems”, Energy Procedia, 78, 2452-2457.
  • Ruth, D.W., (1975) “Simulation of modelling of automobile comfort cooling requirements”, ASHRAE Journals, 53-55.
  • Tüccar, G., Tosun, E., Özcanlı, M. and Aydın, K., (2013) "Possibility of Turkey to transit Electric Vehicle-based transportation", International Journal of Automotive Engineering and Technologies 2: 64-69.
  • Welstand, J., Haskew, H., Gunst, R., and Bevilacqua, O., “Evaluation of the Effects of Air Conditioning Operation and Associated Environmental Conditions on Vehicle Emissions and Fuel Economy,” SAE Technical Paper 2003-01-2247.
There are 22 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Adem Uğurlu 0000-0002-9531-3944

Project Number -
Publication Date December 31, 2021
Published in Issue Year 2021 Issue: 32

Cite

APA Uğurlu, A. (2021). Can Emissions Be Reduced Using Latent Heat of Methane in LNG Powered Heavy Vehicles?. Avrupa Bilim Ve Teknoloji Dergisi(32), 1066-1069. https://doi.org/10.31590/ejosat.1041682