Research Article
PDF Mendeley EndNote BibTex Cite

Obtaining High Mechanical Properties Polyamide - Continuous Carbon Fiber Reinforced Thermoplastic Composites with Infrared Heating

Year 2022, Volume , Issue 36, 222 - 226, 31.05.2022
https://doi.org/10.31590/ejosat.1112990

Abstract

Nowadays, additive manufacturing is being used in various industries such as automotive, aviation and space, medical applications, etc. Although additive manufacturing methods offer more freedom in design and manufacturing, they usually have low production speed and mechanical properties. Continuous carbon fiber reinforced thermoplastic (CFRTP) composites are one of the investigated methods in the literature to increase the mechanical properties of the additively manufactured parts. This study utilized a production line based upon the melt impregnation method to obtain continuous carbon fiber reinforced thermoplastic filaments using polyamide and continuous carbon fibers. In the printing process, an infrared heat source was utilized to further increase the mechanical properties by improving the interlaminar bonding. The mechanical properties of the printed parts were measured using three-point bending tests. A significant increase was observed in flexural modulus of elasticity and flexural strength with infrared heaters at low printing speeds. A maximum value of 418.99 MPa flexural strength and 52.15 GPa flexural modulus was achieved.

References

  • Blakey-Milner, Byron, Paul Gradl, Glen Snedden, Michael Brooks, Jean Pitot, Elena Lopez, Martin Leary, Filippo Berto, and Anton du Plessis. 2021. “Metal Additive Manufacturing in Aerospace: A Review.” Materials and Design 209: 110008. https://doi.org/10.1016/j.matdes.2021.110008.
  • Chacón, J. M., M. A. Caminero, E. García-Plaza, and P. J. Núñez. 2017. “Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection.” Materials and Design 124: 143–57. https://doi.org/10.1016/j.matdes.2017.03.065.
  • Fayazfar, Haniyeh, Mehrnaz Salarian, Allan Rogalsky, Dyuti Sarker, Paola Russo, Vlad Paserin, and Ehsan Toyserkani. 2018. “A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties.” Materials and Design 144: 98–128. https://doi.org/10.1016/j.matdes.2018.02.018.
  • Ganesh Sarvankar, Shruti, and Sanket Nandaram Yewale. 2019. “Additive Manufacturing in Automobile Industry.” International Journal of Research in Aeronautical and Echanical Engineering 7 (4): 1–10.
  • Ghoshal, Sushanta. 2017. “Polymer/Carbon Nanotubes (CNT) Nanocomposites Processing Using Additive Manufacturing (Three-Dimensional Printing) Technique: An Overview.” Fibers 5 (4). https://doi.org/10.3390/fib5040040.
  • Heidari-Rarani, M., M. Rafiee-Afarani, and A. M. Zahedi. 2019. “Mechanical Characterization of FDM 3D Printing of Continuous Carbon Fiber Reinforced PLA Composites.” Composites Part B: Engineering 175 (October 2018): 107147. https://doi.org/10.1016/j.compositesb.2019.107147.
  • Hu, Qingxi, Yongchao Duan, Haiguang Zhang, Dali Liu, Biao Yan, and Fujun Peng. 2018. “Manufacturing and 3D Printing of Continuous Carbon Fiber Prepreg Filament.” Journal of Materials Science 53 (3): 1887–98. https://doi.org/10.1007/s10853-017-1624-2.
  • Kok, Y., X. P. Tan, P. Wang, M. L.S. Nai, N. H. Loh, E. Liu, and S. B. Tor. 2018. “Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review.” Materials and Design 139: 565–86. https://doi.org/10.1016/j.matdes.2017.11.021.
  • Li, Nanya, Yingguang Li, and Shuting Liu. 2016. “Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing.” Journal of Materials Processing Technology 238: 218–25. https://doi.org/10.1016/j.jmatprotec.2016.07.025.
  • Li, Yan, Zuying Feng, Lijing Huang, Khamis Essa, Emiliano Bilotti, Han Zhang, Ton Peijs, and Liang Hao. 2019. “Additive Manufacturing High Performance Graphene-Based Composites: A Review.” Composites Part A: Applied Science and Manufacturing 124 (October 2018): 105483. https://doi.org/10.1016/j.compositesa.2019.105483.
  • Liu, Tengfei, Xiaoyong Tian, Yayuan Zhang, Yi Cao, and Dichen Li. 2020. “High-Pressure Interfacial Impregnation by Micro-Screw in-Situ Extrusion for 3D Printed Continuous Carbon Fiber Reinforced Nylon Composites.” Composites Part A: Applied Science and Manufacturing 130 (August 2019): 105770. https://doi.org/10.1016/j.compositesa.2020.105770.
  • Matsuzaki, Ryosuke, Masahito Ueda, Masaki Namiki, Tae Kun Jeong, Hirosuke Asahara, Keisuke Horiguchi, Taishi Nakamura, Akira Todoroki, and Yoshiyasu Hirano. 2016. “Three-Dimensional Printing of Continuous-Fiber Composites by in-Nozzle Impregnation.” Scientific Reports 6 (December 2015): 1–7. https://doi.org/10.1038/srep23058.
  • Mazurchevici, Andrei Danut, Dumitru Nedelcu, and Ramona Popa. 2020. “Additive Manufacturing of Composite Materials by FDM Technology: A Review.” Indian Journal of Engineering and Materials Sciences 27 (2): 179–92.
  • Paolini, Alexander, Stefan Kollmannsberger, and Ernst Rank. 2019. “Additive Manufacturing in Construction: A Review on Processes, Applications, and Digital Planning Methods.” Additive Manufacturing 30 (October): 100894. https://doi.org/10.1016/j.addma.2019.100894.
  • Thompson, Adam, Donal McNally, Ian Maskery, and Richard K. Leach. 2017. “X-Ray Computed Tomography and Additive Manufacturing in Medicine: A Review.” International Journal of Metrology and Quality Engineering 8. https://doi.org/10.1051/ijmqe/2017015.
  • Tian, Xiaoyong, Tengfei Liu, Chuncheng Yang, Qingrui Wang, and Dichen Li. 2016. “Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites.” Composites Part A: Applied Science and Manufacturing 88: 198–205. https://doi.org/10.1016/j.compositesa.2016.05.032.
  • Todoroki, Akira, Tastuki Oasada, Yoshihiro Mizutani, Yoshiro Suzuki, Masahito Ueda, Ryosuke Matsuzaki, and Yoshiyasu Hirano. 2020. “Tensile Property Evaluations of 3D Printed Continuous Carbon Fiber Reinforced Thermoplastic Composites.” Advanced Composite Materials 29 (2): 147–62. https://doi.org/10.1080/09243046.2019.1650323.

Kızılötesi Isıtma ile Yüksek Mekanik Özelliklere Sahip Poliamid - Sürekli Karbon Elyaf Takviyeli Termoplastik Kompozit Üretimi

Year 2022, Volume , Issue 36, 222 - 226, 31.05.2022
https://doi.org/10.31590/ejosat.1112990

Abstract

Günümüzde eklemeli imalat, otomotiv, havacılık ve uzay, medikal uygulamalar vb. gibi çeşitli endüstrilerde kullanılmaktadır. Eklemeli imalat yöntemleri tasarım ve imalatta daha fazla özgürlük sunsa da genellikle düşük üretim hızı ve mekanik özelliklere sahiptir. Sürekli karbon elyaf takviyeli termoplastik kompozitler, eklemeli imalat ile üretilen parçaların mekanik özelliklerini artırmak için literatürde araştırılan yöntemlerden biridir. Bu çalışmada, poliamid ve sürekli karbon fiber kullanılarak sürekli karbon fiber takviyeli termoplastik filamentler elde etmek için eriyik emprenyene yöntemine dayalı bir üretim hattı kullanılmıştır. Baskı işleminde, katmanlar arası dayanımı geliştirerek mekanik özellikleri daha da artırmak için bir kızılötesi ısıtıcı kullanıldı. Basılan parçaların mekanik özellikleri, üç nokta eğme testleri kullanılarak ölçülmüştür. Kızılötesi ısıtıcılar ile düşük baskı hızlarında eğilme elastisite modülü ve eğilme mukavemetinde önemli bir artış gözlemlendi. Maksimum 418.99 MPa eğilme mukavemeti ve 52.15 GPa eğilme modülü değerine ulaşıldı.

References

  • Blakey-Milner, Byron, Paul Gradl, Glen Snedden, Michael Brooks, Jean Pitot, Elena Lopez, Martin Leary, Filippo Berto, and Anton du Plessis. 2021. “Metal Additive Manufacturing in Aerospace: A Review.” Materials and Design 209: 110008. https://doi.org/10.1016/j.matdes.2021.110008.
  • Chacón, J. M., M. A. Caminero, E. García-Plaza, and P. J. Núñez. 2017. “Additive Manufacturing of PLA Structures Using Fused Deposition Modelling: Effect of Process Parameters on Mechanical Properties and Their Optimal Selection.” Materials and Design 124: 143–57. https://doi.org/10.1016/j.matdes.2017.03.065.
  • Fayazfar, Haniyeh, Mehrnaz Salarian, Allan Rogalsky, Dyuti Sarker, Paola Russo, Vlad Paserin, and Ehsan Toyserkani. 2018. “A Critical Review of Powder-Based Additive Manufacturing of Ferrous Alloys: Process Parameters, Microstructure and Mechanical Properties.” Materials and Design 144: 98–128. https://doi.org/10.1016/j.matdes.2018.02.018.
  • Ganesh Sarvankar, Shruti, and Sanket Nandaram Yewale. 2019. “Additive Manufacturing in Automobile Industry.” International Journal of Research in Aeronautical and Echanical Engineering 7 (4): 1–10.
  • Ghoshal, Sushanta. 2017. “Polymer/Carbon Nanotubes (CNT) Nanocomposites Processing Using Additive Manufacturing (Three-Dimensional Printing) Technique: An Overview.” Fibers 5 (4). https://doi.org/10.3390/fib5040040.
  • Heidari-Rarani, M., M. Rafiee-Afarani, and A. M. Zahedi. 2019. “Mechanical Characterization of FDM 3D Printing of Continuous Carbon Fiber Reinforced PLA Composites.” Composites Part B: Engineering 175 (October 2018): 107147. https://doi.org/10.1016/j.compositesb.2019.107147.
  • Hu, Qingxi, Yongchao Duan, Haiguang Zhang, Dali Liu, Biao Yan, and Fujun Peng. 2018. “Manufacturing and 3D Printing of Continuous Carbon Fiber Prepreg Filament.” Journal of Materials Science 53 (3): 1887–98. https://doi.org/10.1007/s10853-017-1624-2.
  • Kok, Y., X. P. Tan, P. Wang, M. L.S. Nai, N. H. Loh, E. Liu, and S. B. Tor. 2018. “Anisotropy and Heterogeneity of Microstructure and Mechanical Properties in Metal Additive Manufacturing: A Critical Review.” Materials and Design 139: 565–86. https://doi.org/10.1016/j.matdes.2017.11.021.
  • Li, Nanya, Yingguang Li, and Shuting Liu. 2016. “Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing.” Journal of Materials Processing Technology 238: 218–25. https://doi.org/10.1016/j.jmatprotec.2016.07.025.
  • Li, Yan, Zuying Feng, Lijing Huang, Khamis Essa, Emiliano Bilotti, Han Zhang, Ton Peijs, and Liang Hao. 2019. “Additive Manufacturing High Performance Graphene-Based Composites: A Review.” Composites Part A: Applied Science and Manufacturing 124 (October 2018): 105483. https://doi.org/10.1016/j.compositesa.2019.105483.
  • Liu, Tengfei, Xiaoyong Tian, Yayuan Zhang, Yi Cao, and Dichen Li. 2020. “High-Pressure Interfacial Impregnation by Micro-Screw in-Situ Extrusion for 3D Printed Continuous Carbon Fiber Reinforced Nylon Composites.” Composites Part A: Applied Science and Manufacturing 130 (August 2019): 105770. https://doi.org/10.1016/j.compositesa.2020.105770.
  • Matsuzaki, Ryosuke, Masahito Ueda, Masaki Namiki, Tae Kun Jeong, Hirosuke Asahara, Keisuke Horiguchi, Taishi Nakamura, Akira Todoroki, and Yoshiyasu Hirano. 2016. “Three-Dimensional Printing of Continuous-Fiber Composites by in-Nozzle Impregnation.” Scientific Reports 6 (December 2015): 1–7. https://doi.org/10.1038/srep23058.
  • Mazurchevici, Andrei Danut, Dumitru Nedelcu, and Ramona Popa. 2020. “Additive Manufacturing of Composite Materials by FDM Technology: A Review.” Indian Journal of Engineering and Materials Sciences 27 (2): 179–92.
  • Paolini, Alexander, Stefan Kollmannsberger, and Ernst Rank. 2019. “Additive Manufacturing in Construction: A Review on Processes, Applications, and Digital Planning Methods.” Additive Manufacturing 30 (October): 100894. https://doi.org/10.1016/j.addma.2019.100894.
  • Thompson, Adam, Donal McNally, Ian Maskery, and Richard K. Leach. 2017. “X-Ray Computed Tomography and Additive Manufacturing in Medicine: A Review.” International Journal of Metrology and Quality Engineering 8. https://doi.org/10.1051/ijmqe/2017015.
  • Tian, Xiaoyong, Tengfei Liu, Chuncheng Yang, Qingrui Wang, and Dichen Li. 2016. “Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites.” Composites Part A: Applied Science and Manufacturing 88: 198–205. https://doi.org/10.1016/j.compositesa.2016.05.032.
  • Todoroki, Akira, Tastuki Oasada, Yoshihiro Mizutani, Yoshiro Suzuki, Masahito Ueda, Ryosuke Matsuzaki, and Yoshiyasu Hirano. 2020. “Tensile Property Evaluations of 3D Printed Continuous Carbon Fiber Reinforced Thermoplastic Composites.” Advanced Composite Materials 29 (2): 147–62. https://doi.org/10.1080/09243046.2019.1650323.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mert NERGÜN (Primary Author)
KARADENIZ TECHNICAL UNIVERSITY
0000-0002-7800-6731
Türkiye


Nafız ÖNEL
KARADENIZ TECHNICAL UNIVERSITY
0000-0001-8083-3763
Türkiye


Bahri Barış VATANDAŞ
KARADENIZ TECHNICAL UNIVERSITY
0000-0002-5358-0374
Türkiye


Altuğ UŞUN
KARADENIZ TECHNICAL UNIVERSITY
0000-0003-0773-9548
Türkiye


Recep GÜMRÜK
KARADENIZ TECHNICAL UNIVERSITY
0000-0002-1447-523X
Türkiye

Thanks This work was supported by The Scientific and Technical Research Council of Turkey (TÜBİTAK) with grant number 120M717 and the Office of Scientific Research Projects of Karadeniz Technical University, Turkey, with the grant number FBA-2020-8974.
Early Pub Date April 11, 2022
Publication Date May 31, 2022
Published in Issue Year 2022, Volume , Issue 36

Cite

Bibtex @research article { ejosat1112990, journal = {Avrupa Bilim ve Teknoloji Dergisi}, eissn = {2148-2683}, address = {}, publisher = {Osman SAĞDIÇ}, year = {2022}, number = {36}, pages = {222 - 226}, doi = {10.31590/ejosat.1112990}, title = {Obtaining High Mechanical Properties Polyamide - Continuous Carbon Fiber Reinforced Thermoplastic Composites with Infrared Heating}, key = {cite}, author = {Nergün, Mert and Önel, Nafız and Vatandaş, Bahri Barış and Uşun, Altuğ and Gümrük, Recep} }
APA Nergün, M. , Önel, N. , Vatandaş, B. B. , Uşun, A. & Gümrük, R. (2022). Obtaining High Mechanical Properties Polyamide - Continuous Carbon Fiber Reinforced Thermoplastic Composites with Infrared Heating . Avrupa Bilim ve Teknoloji Dergisi , ICAENS May 2022 , 222-226 . DOI: 10.31590/ejosat.1112990
MLA Nergün, M. , Önel, N. , Vatandaş, B. B. , Uşun, A. , Gümrük, R. "Obtaining High Mechanical Properties Polyamide - Continuous Carbon Fiber Reinforced Thermoplastic Composites with Infrared Heating" . Avrupa Bilim ve Teknoloji Dergisi (2022 ): 222-226 <https://dergipark.org.tr/en/pub/ejosat/issue/69376/1112990>
Chicago Nergün, M. , Önel, N. , Vatandaş, B. B. , Uşun, A. , Gümrük, R. "Obtaining High Mechanical Properties Polyamide - Continuous Carbon Fiber Reinforced Thermoplastic Composites with Infrared Heating". Avrupa Bilim ve Teknoloji Dergisi (2022 ): 222-226
RIS TY - JOUR T1 - Obtaining High Mechanical Properties Polyamide - Continuous Carbon Fiber Reinforced Thermoplastic Composites with Infrared Heating AU - Mert Nergün , Nafız Önel , Bahri Barış Vatandaş , Altuğ Uşun , Recep Gümrük Y1 - 2022 PY - 2022 N1 - doi: 10.31590/ejosat.1112990 DO - 10.31590/ejosat.1112990 T2 - Avrupa Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 222 EP - 226 VL - IS - 36 SN - -2148-2683 M3 - doi: 10.31590/ejosat.1112990 UR - https://doi.org/10.31590/ejosat.1112990 Y2 - 2022 ER -
EndNote %0 European Journal of Science and Technology Obtaining High Mechanical Properties Polyamide - Continuous Carbon Fiber Reinforced Thermoplastic Composites with Infrared Heating %A Mert Nergün , Nafız Önel , Bahri Barış Vatandaş , Altuğ Uşun , Recep Gümrük %T Obtaining High Mechanical Properties Polyamide - Continuous Carbon Fiber Reinforced Thermoplastic Composites with Infrared Heating %D 2022 %J Avrupa Bilim ve Teknoloji Dergisi %P -2148-2683 %V %N 36 %R doi: 10.31590/ejosat.1112990 %U 10.31590/ejosat.1112990
ISNAD Nergün, Mert , Önel, Nafız , Vatandaş, Bahri Barış , Uşun, Altuğ , Gümrük, Recep . "Obtaining High Mechanical Properties Polyamide - Continuous Carbon Fiber Reinforced Thermoplastic Composites with Infrared Heating". Avrupa Bilim ve Teknoloji Dergisi / 36 (May 2022): 222-226 . https://doi.org/10.31590/ejosat.1112990
AMA Nergün M. , Önel N. , Vatandaş B. B. , Uşun A. , Gümrük R. Obtaining High Mechanical Properties Polyamide - Continuous Carbon Fiber Reinforced Thermoplastic Composites with Infrared Heating. EJOSAT. 2022; (36): 222-226.
Vancouver Nergün M. , Önel N. , Vatandaş B. B. , Uşun A. , Gümrük R. Obtaining High Mechanical Properties Polyamide - Continuous Carbon Fiber Reinforced Thermoplastic Composites with Infrared Heating. Avrupa Bilim ve Teknoloji Dergisi. 2022; (36): 222-226.
IEEE M. Nergün , N. Önel , B. B. Vatandaş , A. Uşun and R. Gümrük , "Obtaining High Mechanical Properties Polyamide - Continuous Carbon Fiber Reinforced Thermoplastic Composites with Infrared Heating", Avrupa Bilim ve Teknoloji Dergisi, no. 36, pp. 222-226, May. 2022, doi:10.31590/ejosat.1112990