Research Article
BibTex RIS Cite

Radar ve Daha Geniş Frekans Uygulamaları için Zeolit: Kırpılmış Elyaf Kompozitlerin Ekranlama Etkinliği

Year 2022, Issue: 41, 240 - 245, 30.11.2022
https://doi.org/10.31590/ejosat.1141007

Abstract

Bu çalışmada, geleneksel karışık oksit tekniği kullanılarak zeolite: kırpılmış elyaf kompozitler üretilmiştir. Tek fazlı doğal zeolit bileşiği 1050 °C'de 4 saat sinterlendikten sonra üretildi. Yapısal inceleme için, çeşitli miktarlarda zeolit: kırpılmış elyaf kompozit tozları üretildi. Yapısal analiz için X-ışını kırınımı (XRD) yapıldı, bu da zeolitte ikinci fazın oluşmadığını gösterdi. Ek olarak, zeolit: kırpılmış elyaf kompozitler, çeşitli oranlarda zeolit, kırpılmış elyaf bileşimleri ve epoksi kullanılarak sıcak presleme ile imal edildi. Çeşitli ağırlıklarda oluşturulan zeolite: kırpılmış elyaflar bileşiği ve epoksi reçinesi, mikrodalga koruyucu etkili kompozitleri imal etmek için kullanıldı. Ağ analizör (NA) cihazı kullanılarak, 1.5 mm kalınlıktaki zeolit: kırpılmış elyaf kompozitlerin mikrodalga ekranlama etkinliği 6.5-17.5 GHz frekans aralığında ölçüldü ve 17.17 GHz'de minimum -40.52 dB ekranlama etkinlik değeri elde edildi. Zeolit: kırpılmış elyaf kompozitlerinin özellikleri, ekranlama etkinliği için karakterize edildi. Numunelerdeki zeolit ve kırpılmış elyafların içeriği, mikrodalga ekranlama etkisi performansını değiştirmek için daha büyük ve gerekli frekans bantları için modüle edilebilir.

Thanks

Bu çalışma, aramızdan ayrılan yardımları sonsuz olan Salim Şahin, Emsal Şahin ve Prof. Dr. Ayhan Mergen anısınadır.

References

  • Abbasi, H., Antunes, M., Velasco, J.I. (2019). Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress in Materials Science, 103, 319-373.
  • Al-Saleh, M.H. (2015). Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synthetic Metals, 205, 78-84.
  • Alswat, A.A., Ahmad, M.B., Hussein, M.Z., Ibrahim, N.A., Saleh, T.A. (2017). Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. Journal of Materials Science & Technology, 33(8), 889–896.
  • Avadhanam, V., Thanasamy, D., Mathad, J.K., Tumuki, P., (2018). Single walled carbon nano tube–polyaniline core-shell/polyurethane polymer composite for electromagnetic interference shielding. Polymer Composites, 39, 4104-4114.
  • Cao, D., Pan, L., Li, H., Li, J., Wang, X., Cheng, X., Wang, Z., Wang, J., Liu, Q. A. (2016). Facile strategy for synthesis of spinel ferrite nano-granules and their potential applications. RSC Advances, 71, 66795 – 66802.
  • Chen, Z., Yi, D., Shen, B., Zhang, L., Ma, X., Pang, Y., Liu, L., Wei, X., Zheng, W. (2018). Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding. Carbon, 139, 271-278.
  • Chen, Z., Xu, C., Ma, C., Ren, W., Cheng, H-M. (2013). Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Advanced Materials, 25(9), 1296-1300.
  • Chung, D.D.L. (2001). Electromagnetic interference shielding effectiveness of carbon materials. Carbon, 39, 279-285.
  • Chung, D.D.L. (2000). Materials for electromagnetic interference shielding. Journal of Materials Engineering and Performance, 9, 350-354.
  • Gupta, N., Lin, T-C. and Shapiro, M.D. (2007). Clay-epoxy nanocomposites: processing and properties. Nanocomposite Materials, 59, 61-65.
  • Ibrahim, J.E.F.M., Gömze, L.A., Koncz-Horvath, D., Filep, A., Kocserha, I. (2022). Preparation, characterization, and physicomechanical properties of glass-ceramic foams based on alkali-activation and sintering of zeolit-poor rock and eggshell. Ceramics International, 39, 1-13.
  • Ibrahim, J. E. F. M., Tihtih, M., Kurovics, E., Şahin, E.I., Gömze, L. A., Kocserha,, I. (2022). Glass-ceramic foams produced from zeolite-poor rock (Tokaj). Pollack Periodica, 18, 2-21.
  • Jia, X., Shen, B., Chen, Z., Zhang, L., Zheng, W. (2019). High-performance carbonized waste corrugated boards reinforced with epoxy coating as lightweight structured electromagnetic shields. ACS Sustainable Chemistry & Engineering, 7(22), 18718-18725.
  • Koohsaryan, E., Anbia, M. (2016). Nanosized and hierarchical zeolites: a short review. Chinese Journal of Catalysis, 37, 447–467.
  • Kargar, F., Barani, Z., Balinskiy, M., Magana, A.S., Lewis, J.S., Balandin, A.A. (2019). Dual-functional graphene composites for electromagnetic shielding and thermal management. Advanced Electronic Materials, 5(1), 1800558.
  • Lim, H.S., Lee, H.S. and Kwon, S.J. (2019). Mechanical properties and radiation shielding performance in concrete with electric arc furnace oxidizing slag aggregate. Journal of Ceramic Processing Research, 20(4), 363-371.
  • Liu, J., Zhang, H.B., Sun, R., Liu, Y., Liu, Z., Zhou, A., Yu, Z.Z. (2017) Hydrophobic,flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Advanced Materials, 29(38), 1702367.
  • Mondal, S., Das, P., Ganguly, S., Ravindren, R., Remanan, S., Bhawal, P., Das, T.K., Das, N.C. (2018). Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lighweight carbon nanotube based polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 107, 447-460.
  • Mondal, S., Ganguly, S., Das, P., Khastgir, D., Das, N.C. (2017). Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites. Composites Part B: Engineering, 119, 41-56.
  • Nie, J., Wang, G., Hou, D., Guo, F., Han, Y. (2018). The preparation and research on the electromagnetic shielding effectiveness of T-ZnO@Ag/Silicone rubber composites. Materials Science (Medziagotyra), 26(2), 205-209.
  • Pan, H., Yin, X., Xue, J., Cheng, L. and Zhang, L. (2017). Microstructures and EMI shielding properties of composite ceramics reinforced with carbon nanowires and nanowires-nanotubes hybrid. Ceramics International, 43, 12221–12231.
  • Qasrawi, A.F., Hamarsheh, Areeen. A. (2022). Structural, optical and electrical properties of band-aligned CdBr2/Au/ Ga2S3 interfaces and their application as band filters suitable for 5G technologies. Journal of Electronic Materials, 51, 3693-3704.
  • Sahin, E.I. (2022). Microwave electromagnetic shielding effectiveness of ZnNb2O6- chopped strands composites for radar and wideband (6.5-18 GHz) applications. Lithuanian Journal of Physics, 62, 127-136.
  • Sahin, E. I., Emek, M. (2021). Electromagnetic shielding effectiveness of wollastonite/PANI/colemanite composites. European Journal of Science and Technology, 21, 83-89.
  • Sahin, E.İ., Emek, M., Ertuğ, B., Kartal, M. (2020). Electromagnetic shielding performances of Colemanite/PANI/SiO2 composites. Beykent Üniversitesi Fen ve Mühendislik Dergisi, 13(1), 34-42.
  • Santhosi, B.V. S. R. N., Ramji, K., Rao, N.B.R.M.(2020). Design and development of polymeric nanocomposite reinforced with grapheme for effective EMI shielding in X-band, Phsica B: Condensed Matter 586, 1-9.
  • Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Hong, S.M., Koo, C.M., Gogotsi, Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137-1140.
  • Shayed, M. A., Cherif, Ch., Hund, R. D., Cheng, T. ( 2010). Carbon and glass fibers modified by polysilazane based thermal resistant coating. Textile Research Journal, 80(11), 1118 – 1128.
  • Singh, B.P., Choudhary, V., Saini, P., Mathur, R.B. (2012). Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding. AIP Advances, 2(022151), 1-7.
  • Snelders, D.J.M., Mackenzie, F.O.V., Boersma, A., Peeters, R.H.M. (2016). Zeolites as coating materials for fiber bragg grating chemical sensors for extreme conditions. Sensors and Actuators B: Chemical, 235, 698–706.
  • Tibbetts, G. G., Lake, M. L., Strong, K. L. and Rice, B. P. (2007). A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology, 67, 1709–1718.
  • Ting, T. H., Yu, R.P., Jau, Y.N. (2011). Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40 GHz. Materials Chemistry and Physics, 126, 364-36.
  • Xiangcheng, L., Chung D.D.L. (1999). Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Composites Part B: Engineering, 30, 227–231.
  • Yan, D.X., Pang, H., Li, B., Vajtai, R., Xu, L., Ren, P.G., Wang, J.H., Li, Z.M. (2014). Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Advanced Functional Materials, 25(4), 559-566.
  • Yin X., Jin, J., Chen, X., Rosenkranz, A., Luo, J. (2019). Ultra-wear-resistant MXene-based composite coating via in situ formed nanostructured tribofilm. ACS Applied Materials & Interfaces, 11(35), 32569-32576.
  • Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., Tang, B., Chan, M., Kim, J.K. (2014). Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Advanced Materials, 26(31), 5480-5487.
  • Yuan, Y., Liyang, L., Yang, M., Zhang, T., Xu, F., Lin, Z., Ding, Y., Wang, C., Li, J., Yin, W., Peng, Q., He, X. and Li, Y. (2017). Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding. Carbon, 123, 223–232.
  • Zhang, H.B., Yan, Q., Zheng, W.G., He, Z., Yu, Z.Z. (2011). Tough graphene polymer microcellular foams for electromagnetic interference shielding. ACS Applied Materials & Interfaces, 3(3), 918–924.
  • Zhang, X., Rao, Y., Guo, J., Qin, G. (2016). Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon, 96, 972-979.
  • Zhang, Y., Fang, X.X., Wen, B.Y. (2015). Asymmetric Ni/PVC films for high-performance electromagnetic interference shielding. Chinese Journal of Polymer Science, 33(6), 899-907.
  • Zhao, F. M., Takeda, N. (2000). Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites part I: experiment results. Composites Part A: Applied Science and Manufacturing, 31, 1203-1214.

Shielding Effectiveness of Zeolite: Chopped Strands Composites for Radar and Wider Frequency Applications

Year 2022, Issue: 41, 240 - 245, 30.11.2022
https://doi.org/10.31590/ejosat.1141007

Abstract

In this study, zeolite: chopped strands composites were produced by using traditional mixed oxide technique. The single phase natural zeolite compound was generated after sintering at 1050 °C for 4 h. For the structural investigation, various quantities powders of zeolite: chopped strands composites were generated. X-ray diffraction (XRD) was carried out for the structural analysis, which indicated that second phase did not form in zeolite. Additionally, the zeolite: strands composites were manufactured by hot pressing using the compositions of zeolite, chopped strands in various proportions and epoxy. The zeolite:chopped strands compound formed in various weights, and epoxy resin were used to fabricate microwave shielding effectiveness composites. Utilizing network analyser (NA), the microwave shielding effect of zeolite: chopped strands composites at a thickness of 1.5 mm were measured in the range of 6.5-17.5 GHz and a minimum of -40.52 dB shielding efficacy value was achieved at 17.17 GHz. Feautures of zeolite: chopped strands composites were characterized for shielding effectiveness. The content of zeolite and chopped strands in the samples may be modulated for the larger and needed frequency bands to change the microwave shielding effect performance.

References

  • Abbasi, H., Antunes, M., Velasco, J.I. (2019). Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Progress in Materials Science, 103, 319-373.
  • Al-Saleh, M.H. (2015). Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites. Synthetic Metals, 205, 78-84.
  • Alswat, A.A., Ahmad, M.B., Hussein, M.Z., Ibrahim, N.A., Saleh, T.A. (2017). Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. Journal of Materials Science & Technology, 33(8), 889–896.
  • Avadhanam, V., Thanasamy, D., Mathad, J.K., Tumuki, P., (2018). Single walled carbon nano tube–polyaniline core-shell/polyurethane polymer composite for electromagnetic interference shielding. Polymer Composites, 39, 4104-4114.
  • Cao, D., Pan, L., Li, H., Li, J., Wang, X., Cheng, X., Wang, Z., Wang, J., Liu, Q. A. (2016). Facile strategy for synthesis of spinel ferrite nano-granules and their potential applications. RSC Advances, 71, 66795 – 66802.
  • Chen, Z., Yi, D., Shen, B., Zhang, L., Ma, X., Pang, Y., Liu, L., Wei, X., Zheng, W. (2018). Semi-transparent biomass-derived macroscopic carbon grids for efficient and tunable electromagnetic shielding. Carbon, 139, 271-278.
  • Chen, Z., Xu, C., Ma, C., Ren, W., Cheng, H-M. (2013). Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Advanced Materials, 25(9), 1296-1300.
  • Chung, D.D.L. (2001). Electromagnetic interference shielding effectiveness of carbon materials. Carbon, 39, 279-285.
  • Chung, D.D.L. (2000). Materials for electromagnetic interference shielding. Journal of Materials Engineering and Performance, 9, 350-354.
  • Gupta, N., Lin, T-C. and Shapiro, M.D. (2007). Clay-epoxy nanocomposites: processing and properties. Nanocomposite Materials, 59, 61-65.
  • Ibrahim, J.E.F.M., Gömze, L.A., Koncz-Horvath, D., Filep, A., Kocserha, I. (2022). Preparation, characterization, and physicomechanical properties of glass-ceramic foams based on alkali-activation and sintering of zeolit-poor rock and eggshell. Ceramics International, 39, 1-13.
  • Ibrahim, J. E. F. M., Tihtih, M., Kurovics, E., Şahin, E.I., Gömze, L. A., Kocserha,, I. (2022). Glass-ceramic foams produced from zeolite-poor rock (Tokaj). Pollack Periodica, 18, 2-21.
  • Jia, X., Shen, B., Chen, Z., Zhang, L., Zheng, W. (2019). High-performance carbonized waste corrugated boards reinforced with epoxy coating as lightweight structured electromagnetic shields. ACS Sustainable Chemistry & Engineering, 7(22), 18718-18725.
  • Koohsaryan, E., Anbia, M. (2016). Nanosized and hierarchical zeolites: a short review. Chinese Journal of Catalysis, 37, 447–467.
  • Kargar, F., Barani, Z., Balinskiy, M., Magana, A.S., Lewis, J.S., Balandin, A.A. (2019). Dual-functional graphene composites for electromagnetic shielding and thermal management. Advanced Electronic Materials, 5(1), 1800558.
  • Lim, H.S., Lee, H.S. and Kwon, S.J. (2019). Mechanical properties and radiation shielding performance in concrete with electric arc furnace oxidizing slag aggregate. Journal of Ceramic Processing Research, 20(4), 363-371.
  • Liu, J., Zhang, H.B., Sun, R., Liu, Y., Liu, Z., Zhou, A., Yu, Z.Z. (2017) Hydrophobic,flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding. Advanced Materials, 29(38), 1702367.
  • Mondal, S., Das, P., Ganguly, S., Ravindren, R., Remanan, S., Bhawal, P., Das, T.K., Das, N.C. (2018). Thermal-air ageing treatment on mechanical, electrical, and electromagnetic interference shielding properties of lighweight carbon nanotube based polymer nanocomposites. Composites Part A: Applied Science and Manufacturing, 107, 447-460.
  • Mondal, S., Ganguly, S., Das, P., Khastgir, D., Das, N.C. (2017). Low percolation threshold and electromagnetic shielding effectiveness of nano-structured carbon based ethylene methyl acrylate nanocomposites. Composites Part B: Engineering, 119, 41-56.
  • Nie, J., Wang, G., Hou, D., Guo, F., Han, Y. (2018). The preparation and research on the electromagnetic shielding effectiveness of T-ZnO@Ag/Silicone rubber composites. Materials Science (Medziagotyra), 26(2), 205-209.
  • Pan, H., Yin, X., Xue, J., Cheng, L. and Zhang, L. (2017). Microstructures and EMI shielding properties of composite ceramics reinforced with carbon nanowires and nanowires-nanotubes hybrid. Ceramics International, 43, 12221–12231.
  • Qasrawi, A.F., Hamarsheh, Areeen. A. (2022). Structural, optical and electrical properties of band-aligned CdBr2/Au/ Ga2S3 interfaces and their application as band filters suitable for 5G technologies. Journal of Electronic Materials, 51, 3693-3704.
  • Sahin, E.I. (2022). Microwave electromagnetic shielding effectiveness of ZnNb2O6- chopped strands composites for radar and wideband (6.5-18 GHz) applications. Lithuanian Journal of Physics, 62, 127-136.
  • Sahin, E. I., Emek, M. (2021). Electromagnetic shielding effectiveness of wollastonite/PANI/colemanite composites. European Journal of Science and Technology, 21, 83-89.
  • Sahin, E.İ., Emek, M., Ertuğ, B., Kartal, M. (2020). Electromagnetic shielding performances of Colemanite/PANI/SiO2 composites. Beykent Üniversitesi Fen ve Mühendislik Dergisi, 13(1), 34-42.
  • Santhosi, B.V. S. R. N., Ramji, K., Rao, N.B.R.M.(2020). Design and development of polymeric nanocomposite reinforced with grapheme for effective EMI shielding in X-band, Phsica B: Condensed Matter 586, 1-9.
  • Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Hong, S.M., Koo, C.M., Gogotsi, Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137-1140.
  • Shayed, M. A., Cherif, Ch., Hund, R. D., Cheng, T. ( 2010). Carbon and glass fibers modified by polysilazane based thermal resistant coating. Textile Research Journal, 80(11), 1118 – 1128.
  • Singh, B.P., Choudhary, V., Saini, P., Mathur, R.B. (2012). Designing of epoxy composites reinforced with carbon nanotubes grown carbon fiber fabric for improved electromagnetic interference shielding. AIP Advances, 2(022151), 1-7.
  • Snelders, D.J.M., Mackenzie, F.O.V., Boersma, A., Peeters, R.H.M. (2016). Zeolites as coating materials for fiber bragg grating chemical sensors for extreme conditions. Sensors and Actuators B: Chemical, 235, 698–706.
  • Tibbetts, G. G., Lake, M. L., Strong, K. L. and Rice, B. P. (2007). A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Composites Science and Technology, 67, 1709–1718.
  • Ting, T. H., Yu, R.P., Jau, Y.N. (2011). Synthesis and microwave absorption characteristics of polyaniline/NiZn ferrite composites in 2–40 GHz. Materials Chemistry and Physics, 126, 364-36.
  • Xiangcheng, L., Chung D.D.L. (1999). Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Composites Part B: Engineering, 30, 227–231.
  • Yan, D.X., Pang, H., Li, B., Vajtai, R., Xu, L., Ren, P.G., Wang, J.H., Li, Z.M. (2014). Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Advanced Functional Materials, 25(4), 559-566.
  • Yin X., Jin, J., Chen, X., Rosenkranz, A., Luo, J. (2019). Ultra-wear-resistant MXene-based composite coating via in situ formed nanostructured tribofilm. ACS Applied Materials & Interfaces, 11(35), 32569-32576.
  • Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., Tang, B., Chan, M., Kim, J.K. (2014). Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Advanced Materials, 26(31), 5480-5487.
  • Yuan, Y., Liyang, L., Yang, M., Zhang, T., Xu, F., Lin, Z., Ding, Y., Wang, C., Li, J., Yin, W., Peng, Q., He, X. and Li, Y. (2017). Lightweight, thermally insulating and stiff carbon honeycomb-induced graphene composite foams with a horizontal laminated structure for electromagnetic interference shielding. Carbon, 123, 223–232.
  • Zhang, H.B., Yan, Q., Zheng, W.G., He, Z., Yu, Z.Z. (2011). Tough graphene polymer microcellular foams for electromagnetic interference shielding. ACS Applied Materials & Interfaces, 3(3), 918–924.
  • Zhang, X., Rao, Y., Guo, J., Qin, G. (2016). Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption. Carbon, 96, 972-979.
  • Zhang, Y., Fang, X.X., Wen, B.Y. (2015). Asymmetric Ni/PVC films for high-performance electromagnetic interference shielding. Chinese Journal of Polymer Science, 33(6), 899-907.
  • Zhao, F. M., Takeda, N. (2000). Effect of interfacial adhesion and statistical fiber strength on tensile strength of unidirectional glass fiber/epoxy composites part I: experiment results. Composites Part A: Applied Science and Manufacturing, 31, 1203-1214.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ethem İlhan Şahin 0000-0001-7859-9066

Mehriban Emek 0000-0001-7322-9808

Early Pub Date October 2, 2022
Publication Date November 30, 2022
Published in Issue Year 2022 Issue: 41

Cite

APA Şahin, E. İ., & Emek, M. (2022). Radar ve Daha Geniş Frekans Uygulamaları için Zeolit: Kırpılmış Elyaf Kompozitlerin Ekranlama Etkinliği. Avrupa Bilim Ve Teknoloji Dergisi(41), 240-245. https://doi.org/10.31590/ejosat.1141007