Research Article
BibTex RIS Cite

Çeyrek Taşıt Modeli için Oransal Kazanca Dayalı Optimum PID Kontrolör Tasarımı

Year 2022, Issue: 41, 400 - 404, 30.11.2022
https://doi.org/10.31590/ejosat.1187598

Abstract

Bu çalışmada, bir aracın aktif süspansiyon sisteminin performans iyileştirilmesi ve araçta meydana gelen titreşimlerin bastırılması amacıyla, kullanılan PID kontrolöre ait parametrelerinin belirlenmesinde etkin ve yeni bir tasarım yöntemi kullanılmıştır. Bu yöntemde PID kontrolör, çeyrek taşıt sistemin yerleşme süresi ve maksimum aşması dikkate alınarak optimal oransal kazanç ayarına dayalı olarak tasarlanmıştır. Bu yöntem, kararlı bir döngüde yerleşme süresini ve % aşım hata oranını en aza indirgemek için optimum oransal kazancı (kp) ayarlayarak kontrolörün diğer parametrelerini elde etmeye dayanmaktadır. Elde edilen simülasyon sonuçları, kontrolsüz süspansiyon sistemi ile önerilen etkin tasarım yöntemiyle parametreleri ayarlanan PID kontrolörün uygulandığı süspansiyon sisteminin karşılaştırılmasıyla değerlendirilmiştir. PID kontrolörün sistem cevaplarını pasif süspansiyon sisteminden daha etkili bir şekilde bastırmıştır.

References

  • Agostibacchio, M., Ciampa, D. & Olita, S. (2014). The vibrations by surface irregularities in road pavements – a Matlab approach. European Transport Research Review, 6 (3), 267 – 275.
  • Altun, Y. (2017). The comparisons of LQR and LQI controllers for Quarter car active suspansion system. Gazi University Journal of Science Part C: design and Technology. 5(3), 61-70.
  • Aly, A. & Farhan, A. (2013). Vehicle suspension systems control: a review. International Journal of Control, Automation and Systems, 2(2), 46-54.
  • Åström, K. J., Hägglund, T., Hang, C. C. & Ho, W. K. (1993). Automatic tuning and adaptation for PID controllers-a survey. Control Engineering Practice, 1(4), 699-714.
  • Åström, K. J. & Hägglund, T. (1995). PID controllers: theory, design, and tuning, Instrument Society of America, Research Triangle Park, North Carolina, 2nd Edition.
  • Cao, D., Song, X. & Ahmadian, M. (2011). Editors perspectives: road vehicle suspension design dynamics, and control. Vehicle system dynamics, 49(1-2), 3-28.
  • Cohen, G.H. & Coon, G.A. (1953). Theoretical consideration of retarded control. Trans ASME 75, 827–834. Denizci, A. & Ulu, C. (2020). Fuzzy Cognitive Map Based PID Controller Design. Avrupa Bilim ve Teknoloji Dergisi, (Special Issue), 165-171.
  • Guclu, R. & Yagiz, N. (2004). Comparison of different control strategies on a vehicle using sliding mode control. Iranian Journal of Science and Technology, 28(4), 413-422.
  • Guclu, R. (2005). Fuzzy logic control of seat vibrations of a nonlinear full vehicle model". Nonlinear Dynamics, 40(1), 21-34.
  • Güçlü, R. & Ateş, G. V. (2005). Beş serbestlik dereceli taşıtın titreşimlerinin aktif kontrolü, 12. Ulusal Makine Teorisi Sempozyumu Bildiriler Kitabı, Kayseri, 375-383.
  • Ho, W. K., Hang, C. C. & Cao, L. S. (1995). Tuning of PID controllers based on gain and phase margins specifications. Automatica. 31, 497- 502.
  • Kararsız, G. & Baştürk, H. İ. (2018). Aktif süspansiyon sistemleri için bilinmeyen bozucu etkisi altında uyarlamalı kontrolcü tasarımı. Pamukkale Üniversitesi Mühendislik Bilim Dergisi. 24(8), 1403-1408.
  • Karlsson, N., Andrew, T. & Hrovat, D. (2001). A backstepping approach to control of active suspensions. Decision and Control. Proceedings of the 40th IEEE Conference on. Vol. 5.
  • Koch, G., Sebastian, S. & Boris, L. (2010). Reference model based adaptive control of a hybrid suspension system. IFAC Proceedings. 43(7), 312-317.
  • Kuo, Y. P. & Li, T. H. S. (1999). GA-Based Fuzzy PI/PID Controller for Automotive Active Suspension System. IEEE Transactions on Industrial Electronics. vol. 46, pp. 1051-1056.
  • Lin, J. & Kanellakopoulos, I. (1996). Adaptive nonlinear control in active suspensions. Proceedings of the IFAC, San Francisco, USA, 113-118.
  • Mahala, K., Mahala, M., Gadkari, P. & Deb, A. (2009). Mathematical models for designing vehicles for ride comfort. 2nd International Conference on Research into Design (ICORD 09), Bangalore, India.
  • Onat, C., Sivrioğlu, S. & Yüksek, İ. (2005). Bir çeyrek taşıt modeli için H∞ kontrolcü tasarımı. Mühendis ve Makine. cilt 46, sayý545, 40-46.
  • Onat, C., Daşkin, M. & Turan, A. (2017). Gain scheduling PI control of an electro-hydraulic actuator for active suspension system. 2nd International Conference On Computational Mathematics and Engineering Sciences (CMES-2017), İstanbul, Turkey.
  • Taghirad, H. & Esmailzadeh, E. (1998). Automobile passenger comfort assured through LQG/LQR active suspension. Journal of vibration and control. 4(5), 603-618.
  • Turan, A., Onat, C. & Sahin, M. (2019). Active vibration suppression of a smart beam via PID controller designed through weighted geometric center method. Proceedings of the 10th Ankara International Aerospace Conference, METU, Ankara, Turkey.
  • Turan, A. & Aggumus, H. (2021a). Implementation of advanced PID control algorithm for SDOF system. Journal of Soft Computing and Artificial Intelligence JSCAI 2(2): 43-52.
  • Turan, A. & Aggumus, H. (2021b). MR damperli yarı aktif yapisal sistem için optimal PID kontrolcü tasarımı. Egitim Publishing Mühendislik Alanında Uluslararası Araştırmalar II. Konya, Turkey.
  • Zhuang, M. & Atherton, D. P. (1993). Automatic tuning of optimum PID controllers. IEE Proc.- D. 140, 3, 216-224.
  • Ziegler, J. G. & Nichols, N. B. (1942). Optimum settings for automatic controllers. Trans. ASME. 64, 759-768.

Optimal PID Controller Design Based on Proportional Gain for Quarter Vehicle Model

Year 2022, Issue: 41, 400 - 404, 30.11.2022
https://doi.org/10.31590/ejosat.1187598

Abstract

In this study, an effective and new design method was used to determine the parameters of the PID controller used in order to improve the performance of a vehicle's active suspension system and to suppress vibrations in the vehicle. In this method, the PID controller is designed based on the optimal proportional gain kp setting, taking into account the settling time and maximum overshoot of the quarter vehicle system. This method is based on obtaining the other parameters of the controller by adjusting the kp to minimize the settling time and maximum overshoot error in a stable cycle. The obtained simulation results were evaluated by comparing the uncontrolled suspension system and the suspension system in which the PID controller whose parameters were adjusted with the proposed effective design method. It suppressed the system responses of the PID controller more effectively than the passive suspension system.

References

  • Agostibacchio, M., Ciampa, D. & Olita, S. (2014). The vibrations by surface irregularities in road pavements – a Matlab approach. European Transport Research Review, 6 (3), 267 – 275.
  • Altun, Y. (2017). The comparisons of LQR and LQI controllers for Quarter car active suspansion system. Gazi University Journal of Science Part C: design and Technology. 5(3), 61-70.
  • Aly, A. & Farhan, A. (2013). Vehicle suspension systems control: a review. International Journal of Control, Automation and Systems, 2(2), 46-54.
  • Åström, K. J., Hägglund, T., Hang, C. C. & Ho, W. K. (1993). Automatic tuning and adaptation for PID controllers-a survey. Control Engineering Practice, 1(4), 699-714.
  • Åström, K. J. & Hägglund, T. (1995). PID controllers: theory, design, and tuning, Instrument Society of America, Research Triangle Park, North Carolina, 2nd Edition.
  • Cao, D., Song, X. & Ahmadian, M. (2011). Editors perspectives: road vehicle suspension design dynamics, and control. Vehicle system dynamics, 49(1-2), 3-28.
  • Cohen, G.H. & Coon, G.A. (1953). Theoretical consideration of retarded control. Trans ASME 75, 827–834. Denizci, A. & Ulu, C. (2020). Fuzzy Cognitive Map Based PID Controller Design. Avrupa Bilim ve Teknoloji Dergisi, (Special Issue), 165-171.
  • Guclu, R. & Yagiz, N. (2004). Comparison of different control strategies on a vehicle using sliding mode control. Iranian Journal of Science and Technology, 28(4), 413-422.
  • Guclu, R. (2005). Fuzzy logic control of seat vibrations of a nonlinear full vehicle model". Nonlinear Dynamics, 40(1), 21-34.
  • Güçlü, R. & Ateş, G. V. (2005). Beş serbestlik dereceli taşıtın titreşimlerinin aktif kontrolü, 12. Ulusal Makine Teorisi Sempozyumu Bildiriler Kitabı, Kayseri, 375-383.
  • Ho, W. K., Hang, C. C. & Cao, L. S. (1995). Tuning of PID controllers based on gain and phase margins specifications. Automatica. 31, 497- 502.
  • Kararsız, G. & Baştürk, H. İ. (2018). Aktif süspansiyon sistemleri için bilinmeyen bozucu etkisi altında uyarlamalı kontrolcü tasarımı. Pamukkale Üniversitesi Mühendislik Bilim Dergisi. 24(8), 1403-1408.
  • Karlsson, N., Andrew, T. & Hrovat, D. (2001). A backstepping approach to control of active suspensions. Decision and Control. Proceedings of the 40th IEEE Conference on. Vol. 5.
  • Koch, G., Sebastian, S. & Boris, L. (2010). Reference model based adaptive control of a hybrid suspension system. IFAC Proceedings. 43(7), 312-317.
  • Kuo, Y. P. & Li, T. H. S. (1999). GA-Based Fuzzy PI/PID Controller for Automotive Active Suspension System. IEEE Transactions on Industrial Electronics. vol. 46, pp. 1051-1056.
  • Lin, J. & Kanellakopoulos, I. (1996). Adaptive nonlinear control in active suspensions. Proceedings of the IFAC, San Francisco, USA, 113-118.
  • Mahala, K., Mahala, M., Gadkari, P. & Deb, A. (2009). Mathematical models for designing vehicles for ride comfort. 2nd International Conference on Research into Design (ICORD 09), Bangalore, India.
  • Onat, C., Sivrioğlu, S. & Yüksek, İ. (2005). Bir çeyrek taşıt modeli için H∞ kontrolcü tasarımı. Mühendis ve Makine. cilt 46, sayý545, 40-46.
  • Onat, C., Daşkin, M. & Turan, A. (2017). Gain scheduling PI control of an electro-hydraulic actuator for active suspension system. 2nd International Conference On Computational Mathematics and Engineering Sciences (CMES-2017), İstanbul, Turkey.
  • Taghirad, H. & Esmailzadeh, E. (1998). Automobile passenger comfort assured through LQG/LQR active suspension. Journal of vibration and control. 4(5), 603-618.
  • Turan, A., Onat, C. & Sahin, M. (2019). Active vibration suppression of a smart beam via PID controller designed through weighted geometric center method. Proceedings of the 10th Ankara International Aerospace Conference, METU, Ankara, Turkey.
  • Turan, A. & Aggumus, H. (2021a). Implementation of advanced PID control algorithm for SDOF system. Journal of Soft Computing and Artificial Intelligence JSCAI 2(2): 43-52.
  • Turan, A. & Aggumus, H. (2021b). MR damperli yarı aktif yapisal sistem için optimal PID kontrolcü tasarımı. Egitim Publishing Mühendislik Alanında Uluslararası Araştırmalar II. Konya, Turkey.
  • Zhuang, M. & Atherton, D. P. (1993). Automatic tuning of optimum PID controllers. IEE Proc.- D. 140, 3, 216-224.
  • Ziegler, J. G. & Nichols, N. B. (1942). Optimum settings for automatic controllers. Trans. ASME. 64, 759-768.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Abdullah Turan 0000-0002-0174-2490

Hüseyin Aggümüş 0000-0002-7158-677X

Early Pub Date October 2, 2022
Publication Date November 30, 2022
Published in Issue Year 2022 Issue: 41

Cite

APA Turan, A., & Aggümüş, H. (2022). Optimal PID Controller Design Based on Proportional Gain for Quarter Vehicle Model. Avrupa Bilim Ve Teknoloji Dergisi(41), 400-404. https://doi.org/10.31590/ejosat.1187598