Research Article
BibTex RIS Cite

Statistical Model for Excitation and Hypersynchronization in the Small Neural Populations

Year 2022, Issue: 45, 30 - 34, 31.12.2022
https://doi.org/10.31590/ejosat.1215105

Abstract

The mathematical modeling of epileptic seizures appearing in small neural populations can follow a few alternative ways: modeling of individual cells and their interaction vs. modeling groups and clusters on neurons. The purpose of this work is invention of a novel continuous (population-based) model for the appearance of the hyper-synchronized firing cells of the epileptiform type. In the same time, we use here the master equations based on the transition probabilities among different states of the cell excitation and hyper-synchronization. We developed an ODE model combining the dynamical equations for different sub-populations (unexcited, excited, and, as our novelty, hypersynchronized). Our model may serve as a simple but powerful tool to analyze the appearance and development of epileptiform dynamics in artificial neural networks. It can cover different cases of microepilepsy, and also may open the gate for studying drug-resistant epilepsy regime. Our dynamical set can be extended with the control inputs mimicking the external perturbations of the neural clusters with the electrical or optogenetic signals. In this case, the set of control algorithms can be applied to detect and suppress the epileptiform dynamics. Thus, the dynamic processes of epilepsy in small neural populations do not demand necessary the development of detailed models for individual neurons. Even the ‘averaged’ dynamical set for the unexcited, excited and hypersynchronized sub-populations can serve as an efficient tool for investigation and numerical simulations of microscopic seizures.

Supporting Institution

Abdullah Gül Üniversitesi

Project Number

Feedback control of epileptiform behavior in the mathematical models of neuron clusters

Thanks

This work was supported by the Abdullah Gül University Foundation, Project “Feedback control of epileptiform behavior in the mathematical models of neuron clusters”.

References

  • Ahmed, E. (2020). On a simple mathematical model for epilepsy motivated by networks, Current Trends on Biostatistics and Biometrics, 2(4), 247.
  • Borisenok, S. (2021). Speed gradient control algorithm for optogenetic modeling, European Journal of Science and Technology, 28, 771-774.
  • Borisenok, S. (2022). Detection and control of epileptiform regime in the Hodgkin-Huxley artificial neural networks via quantum algorithms, Cybernetics and Physics, 11(1), 5-10.
  • Borisenok, S., Çatmabacak, Ö., Ünal, Z. (2018). Control of collective bursting in small Hodgkin-Haxley neuron clusters, Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 60(1), 21-30.
  • Borisenok, S., Ünal, Z. (2017). Tracking of arbitrary regimes for spiking and bursting in the Hodgkin-Huxley neuron, MATTER: International Journal of Science and Technology, 3, 560-576.
  • Buice, M. A., Cowan, J. D. (2009). Statistical mechanics of the neocortex, Progress in Biophysics and Molecular Biology, 99, 53-86.
  • Izhikevich, E. M. (2003). Simple model of spiking neurons, IEEE Transactions on Neural Networks, 14(6), 1569-1572
  • Joshi, J., Rubart, M., Zhu, W. (2020). Optogenetics: Background, methodological advances and potential applications for cardiovascular research and medicine, Frontiers in Bioengineering and Biotechnology, 7, 466.
  • Kesmia, M., Boughaba, S., Jacquir, S. (2020). Control of continuous dynamical systems modeling physiological states, Chaos, Solitons and Fractals, 136, 109805.
  • Kwan, P., Schachter, S. C., Brodie, M. J. (2011). Drug-resistant epilepsy, The New England Journal of Medicine, 365(10), pp. 919-926.
  • Namiki, T., Tsuda, I., Tadokoro, S., et al. (2020). Mathematical structures for epilepsy: High-frequency oscillation and interictal epileptic slow (red slow), Neuroscience Research, 156, 178-187.
  • Rattay, F. (1999). The basic mechanism for the electrical stimulation of the nervous system, Neuroscience, 89(2), 335-346.
  • Silva, F. H. L. da, Blanes, W., Kalitzin, S. N., Parra, J., Suffczynski, P., Velis, D. N. (2003). Dynamical diseases of brain systems: different routes to epileptic seizures, IEEE Transactions on Biomedical Engineering, 50(5), 540-548.
  • Stefanescu, R. A., Shivakeshavan, R. G., Talathi, S. S. (2012). Computational models of epilepsy, Seizure, 21(10), 748-759.
  • Tomanik, G. H. (2020). Predicting epileptic seizures using complex networks. Available: https://lupinepublishers.com/biostatistics-biometrics-journal/pdf/CTBB.MS.ID.000141.pdf

Küçük Nöral Popülasyonlarda Uyarma ve Hipersenkronizasyon için İstatistiksel Model

Year 2022, Issue: 45, 30 - 34, 31.12.2022
https://doi.org/10.31590/ejosat.1215105

Abstract

Küçük nöral popülasyonlarda ortaya çıkan epileptik nöbetlerin matematiksel modellemesi birkaç alternatif yol izleyebilir: tek tek hücrelerin modellenmesi ve bunların etkileşimi ile nöronlar üzerindeki grupların ve kümelerin modellenmesi. Bu çalışmanın amacı, epileptiform tipte hiper-senkronize ateşleyen hücrelerin ortaya çıkması için yeni bir sürekli (nüfusa dayalı) bir modelin icadıdır. Aynı zamanda, burada hücre uyarımının ve hiper senkronizasyonun farklı durumları arasındaki geçiş olasılıklarına dayanan ana denklemleri kullanmaktayız. Farklı alt popülasyonlar için dinamik denklemleri birleştiren bir ADD modeli geliştirdik (uyarılmamış, uyarılmış ve yeniliğimiz olarak hipersenkronize olmuş). Modelimiz, yapay nöral ağlarında epileptiform dinamiklerin ortaya çıkısını ve gelişimini analiz etmek için basit ama güçlü bir araç olarak hizmet edebilir. Farklı mikroepilepsi vakalarını kapsayabilir ve ayrıca ilaca dirençli epilepsi rejimini incelemenin kapısını açabilir. Dinamik setimiz, elektriksel veya optogenetik sinyallerle nöral kümelerin dış tedirginliklerini taklit eden kontrol girdileri ile genişletilebilir. Bu durumda, epileptiform dinamikleri saptamak ve bastırmak için bir dizi kontrol algoritması uygulanabilir. Bu nedenle, küçük nöral popülasyonlardaki epilepsinin dinamik süreçleri, bireysel nöronlar için gerekli ayrıntılı modellerin geliştirilmesini gerektirmez. Uyarılmamış, uyarılmış ve hipersenkronize alt popülasyonlar için ‘ortalama’ dinamik set bile, mikroskobik nöbetlerin incelenmesi ve sayısal simülasyonları için etkili bir araç olarak hizmet verebilir.

Project Number

Feedback control of epileptiform behavior in the mathematical models of neuron clusters

References

  • Ahmed, E. (2020). On a simple mathematical model for epilepsy motivated by networks, Current Trends on Biostatistics and Biometrics, 2(4), 247.
  • Borisenok, S. (2021). Speed gradient control algorithm for optogenetic modeling, European Journal of Science and Technology, 28, 771-774.
  • Borisenok, S. (2022). Detection and control of epileptiform regime in the Hodgkin-Huxley artificial neural networks via quantum algorithms, Cybernetics and Physics, 11(1), 5-10.
  • Borisenok, S., Çatmabacak, Ö., Ünal, Z. (2018). Control of collective bursting in small Hodgkin-Haxley neuron clusters, Communications Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and Engineering, 60(1), 21-30.
  • Borisenok, S., Ünal, Z. (2017). Tracking of arbitrary regimes for spiking and bursting in the Hodgkin-Huxley neuron, MATTER: International Journal of Science and Technology, 3, 560-576.
  • Buice, M. A., Cowan, J. D. (2009). Statistical mechanics of the neocortex, Progress in Biophysics and Molecular Biology, 99, 53-86.
  • Izhikevich, E. M. (2003). Simple model of spiking neurons, IEEE Transactions on Neural Networks, 14(6), 1569-1572
  • Joshi, J., Rubart, M., Zhu, W. (2020). Optogenetics: Background, methodological advances and potential applications for cardiovascular research and medicine, Frontiers in Bioengineering and Biotechnology, 7, 466.
  • Kesmia, M., Boughaba, S., Jacquir, S. (2020). Control of continuous dynamical systems modeling physiological states, Chaos, Solitons and Fractals, 136, 109805.
  • Kwan, P., Schachter, S. C., Brodie, M. J. (2011). Drug-resistant epilepsy, The New England Journal of Medicine, 365(10), pp. 919-926.
  • Namiki, T., Tsuda, I., Tadokoro, S., et al. (2020). Mathematical structures for epilepsy: High-frequency oscillation and interictal epileptic slow (red slow), Neuroscience Research, 156, 178-187.
  • Rattay, F. (1999). The basic mechanism for the electrical stimulation of the nervous system, Neuroscience, 89(2), 335-346.
  • Silva, F. H. L. da, Blanes, W., Kalitzin, S. N., Parra, J., Suffczynski, P., Velis, D. N. (2003). Dynamical diseases of brain systems: different routes to epileptic seizures, IEEE Transactions on Biomedical Engineering, 50(5), 540-548.
  • Stefanescu, R. A., Shivakeshavan, R. G., Talathi, S. S. (2012). Computational models of epilepsy, Seizure, 21(10), 748-759.
  • Tomanik, G. H. (2020). Predicting epileptic seizures using complex networks. Available: https://lupinepublishers.com/biostatistics-biometrics-journal/pdf/CTBB.MS.ID.000141.pdf
There are 15 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Sergey Borisenok 0000-0002-1992-628X

Project Number Feedback control of epileptiform behavior in the mathematical models of neuron clusters
Early Pub Date December 31, 2022
Publication Date December 31, 2022
Published in Issue Year 2022 Issue: 45

Cite

APA Borisenok, S. (2022). Statistical Model for Excitation and Hypersynchronization in the Small Neural Populations. Avrupa Bilim Ve Teknoloji Dergisi(45), 30-34. https://doi.org/10.31590/ejosat.1215105