Review
BibTex RIS Cite

Yaya Dostu Araç Tampon Tasarımı

Year 2022, Issue: 45, 126 - 130, 31.12.2022
https://doi.org/10.31590/ejosat.1220760

Abstract

Araç-yaya kazalarında yüksek yaralanma ve hatta ölüm riskleri göz önüne alındığında, yayalar araç pasif güvenliği kapsamında
savunmasız kullanıcılar olarak değerlendirilmektedir. Bu kapsamda, otomobil üreticileri, özellikle son yirmi yılda, araçta bulunanların
ve yayaların yaralanmasını (ve buna bağlı ölümleri) en aza indirmek maksadı ile ürünlerine birçok yeni özellik dâhil etmişlerdir. Yine
de, her yıl yüzbinlerce insan trafik kazaları neticesinde hayatını kaybetmektedir. Bu noktadan hareketle, yaya yaralanmaları (ve
güvenliği) konusu küresel çapta yankı uyandıran bir güvenlik sorunu haline gelmiş ve yaya dostu araç tasarımlarına olan ilgi
(farkındalık) de artmıştır. Otomobil araç tampon sistemi, çarpışmanın ürettiği darbe enerjisini emmeyi ve bir dereceye kadar yolcuyu,
yayayı ve araç gövdesini korumayı amaçlayan kritik bir araç bileşendir. Bu çalışmada, otomobil araç tampon tasarımının yaya
güvenliği üzerindeki etkisini daha iyi anlamak için sistematik bir literatür taraması yaklaşımından faydalanılmıştır. Bu kapsamda,
tasarımın, malzeme seçiminin ve geometri değişikliklerinin araç tampon sisteminin performansı üzerindeki etkisi yaya güvenliği
dikkate alınarak incelenmiştir. Yaya dostu araç tampon tasarımlarında kullanılan güncel yaklaşımlar ortaya koyulmuş ve tartışılmıştır.

References

  • Ahmed, A. (2020). The influence of the vehicle hood inclination angle on the severity of the pedestrian adult head injury in a front collision using finite element modeling. Thin-Walled Structures, 150, 106674. https://doi.org/10.1016/j.tws.2020.106674
  • Chandak, A., Gandhe, N., Choudhari, K., Gaikwad, N., & Thorat, P. (2021). To enhance crashworthiness of an automobile by introducing energy absorbers and to study its implementation. Materials Today: Proceedings, 47, 3006– 3011. https://doi.org/10.1016/j.matpr.2021.05.477
  • Chen, S., Kuhn, M., Prettner, K., & and Bloom, D. E. (2019). The global macroeconomic burden of road injuries: estimates and projections for 166 countries external icon. The Lancet Planetary Health, 3, 390–398. https://doi.org/10.1016/S2542-5196(19)30170-6
  • Chu, Y., Sun, L., & Li, L. (2019). Lightweight scheme selection for automotive safety structures using a quantifiable multiobjective approach. Journal of Cleaner Production, 241, 118316. https://doi.org/10.1016/j.jclepro.2019.118316
  • Davoodi, M. M., Sapuan, S. M., & Yunus, R. (2008). Conceptual design of a polymer composite automotive bumper energy absorber. Materials & Design, 29(7), 1447–1452. https://doi.org/10.1016/j.matdes.2007.07.011
  • Davoodi, M. M., Sapuan, S. M., Aidy, A., Abu Osman, N. A., Oshkour, A. A., & Wan Abas, W. A. B. (2012). Development process of new bumper beam for passenger car: A review. Materials & Design, 40, 304–313. https://doi.org/10.1016/j.matdes.2012.03.060
  • Decker, W., Koya, B., Pak, W., Untaroiu, C. D., & Gayzik, F. Z. (2019). Evaluation of finite element human body models for use in a standardized protocol for pedestrian safety assessment. Traffic Injury Prevention, 20, 32–36. https://doi.org/10.1080/15389588.2019.1637518
  • Godara, S. S. & Nagar, S. N. (2020). Analysis of frontal bumper beam of automobile vehicle by using carbon fiber composite material. Materials Today: Proceedings, 26, 2601–2607. https://doi.org/10.1016/j.matpr.2020.02.550
  • Huang, Y., Zhou, Q., Koelper, C., Li, Q., & Nie, B. (2020). Are riders of electric two-wheelers safer than bicyclists in collisions with motor vehicles? Accident and Analysis and Prevention, 134, 105336. https://doi.org/10.1016/j.aap.2019.105336
  • Ishikawa, T., Kore, H., Furumoto, A., & Kuroda, S. (2003). Evaluation of pedestrian protection structures using impactors and full-scale dummy tests. In Proceedings of the 18th International Technical Conference on the Enhanced Safety of Vehicles, paper 271.
  • Kim, D. –H., Jung, K. –H., Kim, D. –J., Park S. –H., Kim, D. – H., Lim, J., Nam, B. –G., & Kim, H. –S. (2017). Improving pedestrian safety via the optimization of composite hood structures for automobiles based on the equivalent static load method. Composite Structures, 176, 780–789. http://doi.org/10.1016/j.compstruct.2017.06.016
  • Lei, F., Lv, X., Fang, J., Pang, T., Li, Q., & Sun, G. (2021). Injury biomechanics-based nondeterministic optimization of front-end structures for safety in pedestrian-vehicle impact. Thin-Walled Structures, 167, 108087. https://doi.org/10.1016/j.tws.2021.108087
  • Liu, Y., Wan, X., Xu, W., Shi, L., Deng, G., & Bai, Z. (2022). An intelligent method for accident reconstruction involving car and e-bike coupling automatic simulation and multiobjective optimizations. Accident Analysis and Prevention, 164, 106476. https://doi.org/10.1016/j.aap.2021.106476
  • Nachippan, N. M., Alphonse, M., Bupesh Raja, V. K., Palanikumar, K., Sai Uday Kiran, R., & Gopala Krishna, V. (2021). Numerical analysis of natural fiber reinforced composite bumper. Materials Today: Proceedings, 46, 3817–3823. https://doi.org/10.1016/j.matpr.2021.02.045
  • Qi, C., Sun, Y., & Yang, S. (2018). A comparative study on empty and foam-filled hybrid material double-hat beams under lateral impact. Thin-Walled Structures, 129, 327–341. https://doi.org/10.1016/j.tws.2018.04.018
  • Rambhad, K., Sutar, V., Sonwane, P., Suryawanshi, S., & and Thigale, M. (2020). A review on automotive bumper beam design and analysis. Journal of Automotive Engineering and Technology, 5(1), 21–35.
  • Shang, S., Masson, C., Llari, M., Py, M., Ferrand, Q., Arnoux, P. –J., & Simms, C. (2021). The predictive capacity of the MADYMO ellipsoid pedestrian model for pedestrian ground contact kinematics and injury evaluation. Accident Analysis and Prevention, 149, 105803. https://doi.org/10.1016/j.aap.2020.105803
  • Sun, G., Wang, X., Fang, J., Pang, T., & Li, Q. (2021). Parallelized optimization design of bumper systems under multiple low-speed impact loads. Thin-Walled Structures, 167, 108197. https://doi.org/10.1016/j.tws.2021.108197
  • Teng, T. –L., Ngo, V. –C., & Nguyen, T. –H. (2010). Design of pedestrian friendly vehicle bumper. Journal of Mechanical Science and Technology, 24, 2067–2073. https://doi.org/10.1007/s12206-010-0612-0
  • Teng, T. –L., Liang, C. –C., & Vu, T. –A. (2016). Bumper shape design for pedestrian safety. Journal of Mechanical Science and Technology, 30, 3243–3251. https://doi.org/10.1007/s12206-016-0632-5
  • Wang, C. Y., Wang, W. W., Zhao, W. Z., Wang, Y., & Zhou, G. (2018). Structure design and multi-objective optimization of a novel NPR bumper system. Composites Part B, 153, 78– 96. https://doi.org/10.1016/j.compositesb.2018.07.024
  • World Health Organization (WHO). Road Traffic Injuries. June 2022. [Online]. Available: https://www.who.int/newsroom/fact-sheets/detail/road-traffic-injuries/
  • Yang, S., Sun, Y., & Qi, C. (2020). Performance assessment and optimal design of hybrid material bumper for pedestrian lower extremity protection. International Journal of Mechanical Sciences, 165, 105210. https://doi.org/10.1016/j.ijmecsci.2019.105210
  • Zhang, Y. –L., Zeng, H. –T., Yang, X. –A., Yang, T. –F., Miao, Q. –F., Zhao, W. –D., Tong, F., & Li, D. –R. (2022). Characteristics of human movement and injury in a side collision between the front of a snall car and a bicycle. Legal Medicine, 59, 102116. https://doi.org/10.1016/j.legalmed.2022.102116
  • Zhou, Q., Xia, Y., Wei, X., & Meng, Y. (2022). Temperature influence on impact protection performance of steel-plastic structures–Manifested by head impact against pillars of passenger car. International Journal of Impact Engineering, 159, 104054. https://doi.org/10.1016/j.ijimpeng.2021.104054

Pedestrian-Friendly Vehicle Bumper Design

Year 2022, Issue: 45, 126 - 130, 31.12.2022
https://doi.org/10.31590/ejosat.1220760

Abstract

Pedestrians are considered vulnerable users, considering their high risk of injury or even fatality in car-to-pedestrian accidents. The
post-accident injuries may lead to long-term hospitalizations and deprivation of daily activities. In this regard, car manufacturers have
incorporated several new features into their products in order to minimize injury (and associated fatalities) to vehicle occupants and
pedestrians, especially in the last two decades. Yet hundreds of thousands of people have died on roadways each year. From this

standpoint, pedestrian injuries have become a globally recognized safety concern; hence the interest (and awareness) in pedestrian-
friendly vehicle designs has increased. The automobile vehicle bumper system aims to absorb the impact energy produced by the

collision and, to some extent, preserve the occupant, pedestrian, and car body. So far, the researchers have performed extensive studies
in order to address the relationship between vehicle design and pedestrian safety based on numerical simulations, accident data, and
crash tests. In order to better understand the influence of vehicle bumper design on pedestrian safety, the present study adopted a
systematic literature review approach. It aimed to help gain better insights regarding the effects of design, material selection, and
geometrical modifications on the performance of the bumper system, considering pedestrian safety. The current trends in designing
pedestrian-friendly vehicle bumper designs were identified and discussed.

References

  • Ahmed, A. (2020). The influence of the vehicle hood inclination angle on the severity of the pedestrian adult head injury in a front collision using finite element modeling. Thin-Walled Structures, 150, 106674. https://doi.org/10.1016/j.tws.2020.106674
  • Chandak, A., Gandhe, N., Choudhari, K., Gaikwad, N., & Thorat, P. (2021). To enhance crashworthiness of an automobile by introducing energy absorbers and to study its implementation. Materials Today: Proceedings, 47, 3006– 3011. https://doi.org/10.1016/j.matpr.2021.05.477
  • Chen, S., Kuhn, M., Prettner, K., & and Bloom, D. E. (2019). The global macroeconomic burden of road injuries: estimates and projections for 166 countries external icon. The Lancet Planetary Health, 3, 390–398. https://doi.org/10.1016/S2542-5196(19)30170-6
  • Chu, Y., Sun, L., & Li, L. (2019). Lightweight scheme selection for automotive safety structures using a quantifiable multiobjective approach. Journal of Cleaner Production, 241, 118316. https://doi.org/10.1016/j.jclepro.2019.118316
  • Davoodi, M. M., Sapuan, S. M., & Yunus, R. (2008). Conceptual design of a polymer composite automotive bumper energy absorber. Materials & Design, 29(7), 1447–1452. https://doi.org/10.1016/j.matdes.2007.07.011
  • Davoodi, M. M., Sapuan, S. M., Aidy, A., Abu Osman, N. A., Oshkour, A. A., & Wan Abas, W. A. B. (2012). Development process of new bumper beam for passenger car: A review. Materials & Design, 40, 304–313. https://doi.org/10.1016/j.matdes.2012.03.060
  • Decker, W., Koya, B., Pak, W., Untaroiu, C. D., & Gayzik, F. Z. (2019). Evaluation of finite element human body models for use in a standardized protocol for pedestrian safety assessment. Traffic Injury Prevention, 20, 32–36. https://doi.org/10.1080/15389588.2019.1637518
  • Godara, S. S. & Nagar, S. N. (2020). Analysis of frontal bumper beam of automobile vehicle by using carbon fiber composite material. Materials Today: Proceedings, 26, 2601–2607. https://doi.org/10.1016/j.matpr.2020.02.550
  • Huang, Y., Zhou, Q., Koelper, C., Li, Q., & Nie, B. (2020). Are riders of electric two-wheelers safer than bicyclists in collisions with motor vehicles? Accident and Analysis and Prevention, 134, 105336. https://doi.org/10.1016/j.aap.2019.105336
  • Ishikawa, T., Kore, H., Furumoto, A., & Kuroda, S. (2003). Evaluation of pedestrian protection structures using impactors and full-scale dummy tests. In Proceedings of the 18th International Technical Conference on the Enhanced Safety of Vehicles, paper 271.
  • Kim, D. –H., Jung, K. –H., Kim, D. –J., Park S. –H., Kim, D. – H., Lim, J., Nam, B. –G., & Kim, H. –S. (2017). Improving pedestrian safety via the optimization of composite hood structures for automobiles based on the equivalent static load method. Composite Structures, 176, 780–789. http://doi.org/10.1016/j.compstruct.2017.06.016
  • Lei, F., Lv, X., Fang, J., Pang, T., Li, Q., & Sun, G. (2021). Injury biomechanics-based nondeterministic optimization of front-end structures for safety in pedestrian-vehicle impact. Thin-Walled Structures, 167, 108087. https://doi.org/10.1016/j.tws.2021.108087
  • Liu, Y., Wan, X., Xu, W., Shi, L., Deng, G., & Bai, Z. (2022). An intelligent method for accident reconstruction involving car and e-bike coupling automatic simulation and multiobjective optimizations. Accident Analysis and Prevention, 164, 106476. https://doi.org/10.1016/j.aap.2021.106476
  • Nachippan, N. M., Alphonse, M., Bupesh Raja, V. K., Palanikumar, K., Sai Uday Kiran, R., & Gopala Krishna, V. (2021). Numerical analysis of natural fiber reinforced composite bumper. Materials Today: Proceedings, 46, 3817–3823. https://doi.org/10.1016/j.matpr.2021.02.045
  • Qi, C., Sun, Y., & Yang, S. (2018). A comparative study on empty and foam-filled hybrid material double-hat beams under lateral impact. Thin-Walled Structures, 129, 327–341. https://doi.org/10.1016/j.tws.2018.04.018
  • Rambhad, K., Sutar, V., Sonwane, P., Suryawanshi, S., & and Thigale, M. (2020). A review on automotive bumper beam design and analysis. Journal of Automotive Engineering and Technology, 5(1), 21–35.
  • Shang, S., Masson, C., Llari, M., Py, M., Ferrand, Q., Arnoux, P. –J., & Simms, C. (2021). The predictive capacity of the MADYMO ellipsoid pedestrian model for pedestrian ground contact kinematics and injury evaluation. Accident Analysis and Prevention, 149, 105803. https://doi.org/10.1016/j.aap.2020.105803
  • Sun, G., Wang, X., Fang, J., Pang, T., & Li, Q. (2021). Parallelized optimization design of bumper systems under multiple low-speed impact loads. Thin-Walled Structures, 167, 108197. https://doi.org/10.1016/j.tws.2021.108197
  • Teng, T. –L., Ngo, V. –C., & Nguyen, T. –H. (2010). Design of pedestrian friendly vehicle bumper. Journal of Mechanical Science and Technology, 24, 2067–2073. https://doi.org/10.1007/s12206-010-0612-0
  • Teng, T. –L., Liang, C. –C., & Vu, T. –A. (2016). Bumper shape design for pedestrian safety. Journal of Mechanical Science and Technology, 30, 3243–3251. https://doi.org/10.1007/s12206-016-0632-5
  • Wang, C. Y., Wang, W. W., Zhao, W. Z., Wang, Y., & Zhou, G. (2018). Structure design and multi-objective optimization of a novel NPR bumper system. Composites Part B, 153, 78– 96. https://doi.org/10.1016/j.compositesb.2018.07.024
  • World Health Organization (WHO). Road Traffic Injuries. June 2022. [Online]. Available: https://www.who.int/newsroom/fact-sheets/detail/road-traffic-injuries/
  • Yang, S., Sun, Y., & Qi, C. (2020). Performance assessment and optimal design of hybrid material bumper for pedestrian lower extremity protection. International Journal of Mechanical Sciences, 165, 105210. https://doi.org/10.1016/j.ijmecsci.2019.105210
  • Zhang, Y. –L., Zeng, H. –T., Yang, X. –A., Yang, T. –F., Miao, Q. –F., Zhao, W. –D., Tong, F., & Li, D. –R. (2022). Characteristics of human movement and injury in a side collision between the front of a snall car and a bicycle. Legal Medicine, 59, 102116. https://doi.org/10.1016/j.legalmed.2022.102116
  • Zhou, Q., Xia, Y., Wei, X., & Meng, Y. (2022). Temperature influence on impact protection performance of steel-plastic structures–Manifested by head impact against pillars of passenger car. International Journal of Impact Engineering, 159, 104054. https://doi.org/10.1016/j.ijimpeng.2021.104054
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Onur Can Kalay 0000-0001-8643-6910

Sinan Vargelci 0000-0003-4353-4865

Lino Catenaro 0000-0002-3180-5667

Fatih Karpat 0000-0001-8474-7328

Early Pub Date December 31, 2022
Publication Date December 31, 2022
Published in Issue Year 2022 Issue: 45

Cite

APA Kalay, O. C., Vargelci, S., Catenaro, L., Karpat, F. (2022). Yaya Dostu Araç Tampon Tasarımı. Avrupa Bilim Ve Teknoloji Dergisi(45), 126-130. https://doi.org/10.31590/ejosat.1220760