Research Article
BibTex RIS Cite

Predicting Stock Prices in The Turkish Banking Sector with Artificial Neural Networks: A Comparison of Multi-Layered LSTM Models

Year 2025, Volume: 7 Issue: 2, 169 - 182, 30.08.2025

Abstract

In this study, the stock prices of the leading banks in the Turkish banking sector (Akbank, Garanti Bankası, İş Bankası, and Yapı Kredi Bankası) were predicted using different numbers of LSTM layers (from 1 to 5) to examine the effect of layer depth on model performance, ultimately determining the optimal LSTM architecture. Following time series decomposition of the banks’ stock prices, LSTM-based models predicted these prices using 1- to 5-layer architectures, and an experimental analysis was conducted aiming to reveal the optimal layer depth by comparing performance with RMSE, MAE, MAPE, and R² metrics. In LSTM models with different layer depths, moderately deep architectures provided the best prediction performance, while overly deep structures exhibited performance declines due to increased model complexity. Evaluating the effect of the number of LSTM layers on the stock price movements of the leading banks in the BIST30, this study demonstrates that a deep learning configuration appropriate to the complexity of financial data reveals the risk and return dynamics specific to the banking sector. By emphasizing the optimality of different layer depths in time series forecasting through an innovative method, it makes significant contributions to the literature.

References

  • Behura, J. P., Pande, S. D., & Ramesh, J. V. N. (2023). “Stock Price Prediction using Multi-Layered Sequential LSTM”, EAI Endorsed Transactions on Scalable Information Systems, 11(4), 1-8. https://doi.org/10.4108/eetsis.4585
  • Bhandari, H. N., Rimal, B., Pokhrel, N. R., Rimal, R., Dahal, K. R., & Khatri, R. K. (2022). “Predicting stock market index using LSTM”, Machine Learning with Applications, 9, 100320. https://doi.org/10.1016/j.mlwa.2022.100320
  • Boukhers, Z., Bouabdellah, A., Yang, C., & Jürjens, J. (2022). “Beyond trading data: The hidden influence of public awareness and interest on cryptocurrency volatility”. The 32nd ACM International Conference on Information and Knowledge Management, October 21 - 25, 2023, United Kingdom. https://doi.org/10.1145/3583780.3614790
  • Cheng, L. (2024). “Comparative Analysis of S&P 500 and Nasdaq: A Machine Learning Approach to Understanding Differential Market Sensitivity And Growth Stocks”, 2024 International Conference on Development of Digital Economy (ICDDE 2024), 15 – 17 March 2024, China. https://doi.org/10.1051/shsconf/202418801003
  • Diqi, M., Ordiyasa, I., & Hamzah, H. (2024). “Enhancing Stock Price Prediction Using Stacked Long Short-Term Memory”, It Journal Research and Development, 8(2), 164-174. https://doi.org/10.25299/itjrd.2023.13486
  • Figueiredo, R. and Mendes, H. (2024). “Analyzing Information Leakage on Video Object Detection Datasets by Splitting Images Into Clusters With High Spatiotemporal Correlation”, IEEE Access, 12, 47646-47655. https://doi.org/10.1109/access.2024.3383047
  • Fischer, T. & Krauss, C. (2018). “Deep learning with long short-term memory networks for financial market predictions”, European Journal of Operational Research, 270(2), 654–669. https://doi.org/10.1016/j.ejor.2017.11.054
  • Hillier, D., Guertler, L., Cheng, B., & Tan, C. (2024). “STLM Engineering Report: Dropout”, https://doi.org/10.48550/arxiv.2409.05423
  • Htay, H. S., Ghahremani, M., & Shiaeles, S. (2025). “Enhancing Bitcoin Price Prediction with Deep Learning: Integrating Social Media Sentiment and Historical Data”, Applied Sciences, 15(3), 1554. https://doi.org/10.3390/app15031554
  • I. Yenidoğan, A. Çayir, O. Kozan, T. Dağ and Ç. Arslan, "Bitcoin Forecasting Using ARIMA and PROPHET," 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 2018, pp. 621-624, doi: https://doi.org/10.1109/UBMK.2018.8566476
  • Ismanto, E. and Effendi, N. (2024). “An LSTM-Based Prediction Model For Gradient-Descending Optimization In Virtual Learning Environments”, Computer Science and Information Technologies, 4(3), 199-207. https://doi.org/10.11591/csit.v4i3.pp199-207
  • Jepkoech, J., Mugo, D. M., Kenduiywo, B. K., & Too, E. C. (2021). “The Effect Of Adaptive Learning Rate On The Accuracy of Neural Networks”, International Journal of Advanced Computer Science and Applications, 12(8). https://doi.org/10.14569/ijacsa.2021.0120885
  • Kiliçarslan, S., Adem, K., & Çelik, M. (2021). “An Overview Of The Activation Functions Used In Deep Learning Algorithms”, Journal of New Results in Science. 10(3), 75-88. https://doi.org/10.54187/jnrs.1011739
  • Konur, M., Göçken, M., & Dosdoğru, A. T. (2024). “Stock Price Prediction Using Deep Learning Algorithms Based on Technical Indicators”, Journal of Operations Intelligence, 2(1), 300-320. https://doi.org/10.31181/jopi21202427
  • Liu, Y. (2025, February). “Advancing Stock Return Prediction: A Comprehensive Study of Traditional Machine Learning and Deep Learning Models”, In International Workshop on Navigating the Digital Business Frontier for Sustainable Financial Innovation (ICDEBA 2024) (pp. 869-876). Atlantis Press. https://doi.org/10.2991/978-94-6463-652-9_93
  • Mahboob, K., Shahbaz, M. H., Ali, F., & Qamar, R. (2023). “Predicting the karachi stock price index with an enhanced multi-layered sequential stacked long-short-term memory model”, VFAST Transactions on Software Engineering, 11(2), 249-255. https://doi.org/10.21015/vtse.v11i2.1571
  • Md, A. Q., Kapoor, S., Junni, A. V., Sivaraman, A. K., Tee, K. F., Sabireen, H., & Janakiraman, N. (2023). “Novel Optimization Approach For Stock Price Forecasting Using Multi-Layered Sequential LSTM” Applied Soft Computing, 134, 109830. https://doi.org/10.1016/j.asoc.2022.109830
  • Mutinda, J. K., & Geletu, A. (2025). “Stock Market Index Prediction Using CEEMDAN‐LSTM‐BPNN‐Decomposition Ensemble Model”, Journal of Applied Mathematics, 2025(1), 7706431. https://doi.org/10.1155/jama/7706431
  • Okut, H. (2021). “Deep Learning For Subtyping And Prediction of Diseases: Long-Short Term Memory”, Deep Learning Applications. https://doi.org/10.5772/intechopen.96180
  • Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020). “Deep learning for financial applications: A survey”, Applied Soft Computing Journal, 93, 106384. https://doi.org/10.1016/j.asoc.2020.106384
  • P. Gambhir, A. Dev and P. Bansal, "Investigating Activation Functions to Enhance Speaker Identification with LSTM Networks," 2023 26th Conference of the Oriental COCOSDA International Committee for the Co-ordination and Standardisation of Speech Databases and Assessment Techniques (O-COCOSDA), Delhi, India, 2023, pp. 1-7, doi: https://doi.org/10.1109/O-COCOSDA60357.2023.10482931
  • Pagano, M. (1993). “Financial markets and growth: An overview”, European Economic Review, 37(1993), 613-622. North-Holland. http://doi.org/10.1016/0014-2921(93)90051-B
  • Prasetyowati, S. A. D., Ismail, M., & Badieah, B. (2022). “Implementation Of Least Mean Square Adaptive Algorithm On Covid-19 Prediction”, JUITA: Jurnal Informatika, 10(1), 139. https://doi.org/10.30595/juita.v10i1.11963
  • Safa, R. P., & Oetama, R. S. (2024, August). “Hybrid LSTM Model for Predicting Indonesian Telecommunication Companies Stock Price” In 2024 International Conference on Artificial Intelligence, Blockchain, Cloud Computing, and Data Analytics (ICoABCD) (pp. 184-189). IEEE. https://doi.org/10.1109/ICoABCD63526.2024.10704303
  • Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). “Financial Time Series Forecasting With Deep Learning: A Systematic Literature Review: 2005–2019”, Applied Soft Computing, 90, 106181. https://doi.org/10.1016/j.asoc.2020.106181
  • Şimşek, A. İ. (2024). “Predicting Bitcoin Price: Comparative Analysis of Machine Learning and Deep Learning Models”, Savunma Bilimleri Dergisi, 20(2), 327-342. https://doi.org/10.17134/khosbd.1394501
  • Sun, Z., Huang, J., Xiao, C., & Yang, C. (2024). “HaTT: Hadamard avoiding TT recompression”, arXiv preprint arXiv:2410.04385. https://doi.org/10.48550/arXiv.2410.04385
  • Sunny, M. A. I., Maswood, M. M. S., & Alharbi, A. G. (2020). “Deep Learning-Based Stock Price Prediction Using LSTM and Bi-Directional LSTM Mode”, In 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), 87-92. https://doi.org/10.1109/NILES50944.2020.9257950
  • Tampu, I., Eklund, A., & Haj‐Hosseini, N. (2022). “Inflation Of Test Accuracy Due To Data Leakage In Deep Learning-Based Classification Of Oct Images”, Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01618-6
  • Utomo, J., Wijaya, A. P., Adinata, K. N., Huang, K. N., Margaretha, H., & Ferdinand, F. V. (2024). “Analysis of Closing Stock Price Predictions Energy Sector in Indonesia Using Convolutional Neural Network”, In 2024 2nd International Conference on Technology Innovation and Its Applications (ICTIIA) (pp. 1-6). IEEE. https://doi.org/10.1109/ICTIIA61827.2024.10761267
  • Wang, P., Zheng, X., Ai, G., Liu, D., & Zhu, B. (2020). “Time Series Prediction For The Epidemic Trends of COVID-19 Using The Improved LSTM Deep Learning Method: Case Studies In Russia, Peru and Iran”, Chaos, Solitons & Fractals, 140, 110214. https://doi.org/10.1016/j.chaos.2020.110214
  • Xu, X., & Yoneda, M. (2019). “Multitask Air-Quality Prediction Based on LSTM-Autoencoder Model”, IEEE Transactions On Cybernetics, 51(5), 2577-2586. https://doi.org/10.1109/TCYB.2019.2945999
  • Yuan, Q., He, M., Chen, Z., Liu, M., & Chen, X. (2025). “A Real-Time Prediction Method for Rate of Penetration Sequence in Offshore Deep Wells Drilling Based on Attention Mechanism-Enhanced BILSTM Model”, Ocean Engineering, 325, 120820. https://doi.org/10.1016/j.oceaneng.2025.120820
  • Yurtsever, M. (2021). “Gold price forecasting using LSTM, Bi-LSTM and GRU”, Avrupa Bilim ve Teknoloji Dergisi, (31), 341-347. https://doi.org/10.31590/ejosat.959405
  • Zaheer, S., Anjum, N., Hussain, S., Algarni, A. D., Iqbal, J., Bourouis, S., & Ullah, S. S. (2023). “A Multi Parameter Forecasting for Stock Time Series Data Using LSTM and Deep Learning Model”, Mathematics, 11(3), 590. https://doi.org/10.3390/math11030590
  • Zhang, F., Wu, S., Liu, J., Wang, C., Guo, Z., Xu, A.,& Pan, X. (2021). “Predicting Soil Moisture Content Over Partially Vegetation Covered Surfaces From Hyperspectral Data with Deep Learning”, Soil Science Society of America Journal, 85(4), 989-1001. https://doi.org/10.1002/saj2.20193
  • Zhou, C. (2023). “Long Short-Term Memory Applied on Amazon's Stock Prediction”, Highlights in Science, Engineering and Technology, 34, 71-76. https://doi.org/10.54097/hset.v34i.5380 https://www.borsaistanbul.com/tr/endeks-detay/66/bist-30-agirlik-sinirlamali-10 (Erişim Tarihi: 12.02.2025)

Yapay Sinir Ağları ile Türk Bankacılık Sektörü Hisse Senedi Fiyatlarının Tahmini: Çok Katmanlı LSTM Modellerinin Karşılaştırılması

Year 2025, Volume: 7 Issue: 2, 169 - 182, 30.08.2025

Abstract

Bu çalışmada, Türk bankacılık sektörünün önde gelen bankalarının (Akbank, Garanti Bankası, İş Bankası ve Yapı Kredi Bankası) hisse senedi fiyatları, farklı sayılarda (1’den 5’e) LSTM katmanıyla tahmin edilerek katman derinliğinin model performansına etkisi incelenmiş ve optimal LSTM mimarisi belirlenmiştir. LSTM tabanlı modeller, bankaların hisse senedi fiyatlarını zaman serisi ayrıştırması sonrası 1 ila 5 katmanlı mimarilerle tahmin etmiş, ardından RMSE, MAE, MAPE ve R² metrikleriyle performans karşılaştırması yaparak optimal katman derinliğini ortaya koymayı amaçlayan deneysel bir analiz uygulanmıştır. Farklı katman derinliklerine sahip LSTM modellerinde orta düzeydeki derin mimariler, en iyi tahmin performansını sunarken, aşırı derin yapılarda model karmaşıklığının artması nedeniyle performans düşüşleri gözlenmiştir. BIST30’un önde gelen bankalarının hisse fiyat hareketleri üzerinde LSTM katman sayısının etkisini değerlendiren bu çalışma; finansal verilerin karmaşıklığına uygun derin öğrenme yapılandırmasının bankacılık sektörüne özgü risk ve getiri dinamiklerini ortaya çıkardığını, yenilikçi bir yöntemle zaman serisi tahmininde farklı katman derinliklerinin optimalliğini vurgulayarak literatüre önemli katkılar sağladığını göstermektedir.

References

  • Behura, J. P., Pande, S. D., & Ramesh, J. V. N. (2023). “Stock Price Prediction using Multi-Layered Sequential LSTM”, EAI Endorsed Transactions on Scalable Information Systems, 11(4), 1-8. https://doi.org/10.4108/eetsis.4585
  • Bhandari, H. N., Rimal, B., Pokhrel, N. R., Rimal, R., Dahal, K. R., & Khatri, R. K. (2022). “Predicting stock market index using LSTM”, Machine Learning with Applications, 9, 100320. https://doi.org/10.1016/j.mlwa.2022.100320
  • Boukhers, Z., Bouabdellah, A., Yang, C., & Jürjens, J. (2022). “Beyond trading data: The hidden influence of public awareness and interest on cryptocurrency volatility”. The 32nd ACM International Conference on Information and Knowledge Management, October 21 - 25, 2023, United Kingdom. https://doi.org/10.1145/3583780.3614790
  • Cheng, L. (2024). “Comparative Analysis of S&P 500 and Nasdaq: A Machine Learning Approach to Understanding Differential Market Sensitivity And Growth Stocks”, 2024 International Conference on Development of Digital Economy (ICDDE 2024), 15 – 17 March 2024, China. https://doi.org/10.1051/shsconf/202418801003
  • Diqi, M., Ordiyasa, I., & Hamzah, H. (2024). “Enhancing Stock Price Prediction Using Stacked Long Short-Term Memory”, It Journal Research and Development, 8(2), 164-174. https://doi.org/10.25299/itjrd.2023.13486
  • Figueiredo, R. and Mendes, H. (2024). “Analyzing Information Leakage on Video Object Detection Datasets by Splitting Images Into Clusters With High Spatiotemporal Correlation”, IEEE Access, 12, 47646-47655. https://doi.org/10.1109/access.2024.3383047
  • Fischer, T. & Krauss, C. (2018). “Deep learning with long short-term memory networks for financial market predictions”, European Journal of Operational Research, 270(2), 654–669. https://doi.org/10.1016/j.ejor.2017.11.054
  • Hillier, D., Guertler, L., Cheng, B., & Tan, C. (2024). “STLM Engineering Report: Dropout”, https://doi.org/10.48550/arxiv.2409.05423
  • Htay, H. S., Ghahremani, M., & Shiaeles, S. (2025). “Enhancing Bitcoin Price Prediction with Deep Learning: Integrating Social Media Sentiment and Historical Data”, Applied Sciences, 15(3), 1554. https://doi.org/10.3390/app15031554
  • I. Yenidoğan, A. Çayir, O. Kozan, T. Dağ and Ç. Arslan, "Bitcoin Forecasting Using ARIMA and PROPHET," 3rd International Conference on Computer Science and Engineering (UBMK), Sarajevo, Bosnia and Herzegovina, 2018, pp. 621-624, doi: https://doi.org/10.1109/UBMK.2018.8566476
  • Ismanto, E. and Effendi, N. (2024). “An LSTM-Based Prediction Model For Gradient-Descending Optimization In Virtual Learning Environments”, Computer Science and Information Technologies, 4(3), 199-207. https://doi.org/10.11591/csit.v4i3.pp199-207
  • Jepkoech, J., Mugo, D. M., Kenduiywo, B. K., & Too, E. C. (2021). “The Effect Of Adaptive Learning Rate On The Accuracy of Neural Networks”, International Journal of Advanced Computer Science and Applications, 12(8). https://doi.org/10.14569/ijacsa.2021.0120885
  • Kiliçarslan, S., Adem, K., & Çelik, M. (2021). “An Overview Of The Activation Functions Used In Deep Learning Algorithms”, Journal of New Results in Science. 10(3), 75-88. https://doi.org/10.54187/jnrs.1011739
  • Konur, M., Göçken, M., & Dosdoğru, A. T. (2024). “Stock Price Prediction Using Deep Learning Algorithms Based on Technical Indicators”, Journal of Operations Intelligence, 2(1), 300-320. https://doi.org/10.31181/jopi21202427
  • Liu, Y. (2025, February). “Advancing Stock Return Prediction: A Comprehensive Study of Traditional Machine Learning and Deep Learning Models”, In International Workshop on Navigating the Digital Business Frontier for Sustainable Financial Innovation (ICDEBA 2024) (pp. 869-876). Atlantis Press. https://doi.org/10.2991/978-94-6463-652-9_93
  • Mahboob, K., Shahbaz, M. H., Ali, F., & Qamar, R. (2023). “Predicting the karachi stock price index with an enhanced multi-layered sequential stacked long-short-term memory model”, VFAST Transactions on Software Engineering, 11(2), 249-255. https://doi.org/10.21015/vtse.v11i2.1571
  • Md, A. Q., Kapoor, S., Junni, A. V., Sivaraman, A. K., Tee, K. F., Sabireen, H., & Janakiraman, N. (2023). “Novel Optimization Approach For Stock Price Forecasting Using Multi-Layered Sequential LSTM” Applied Soft Computing, 134, 109830. https://doi.org/10.1016/j.asoc.2022.109830
  • Mutinda, J. K., & Geletu, A. (2025). “Stock Market Index Prediction Using CEEMDAN‐LSTM‐BPNN‐Decomposition Ensemble Model”, Journal of Applied Mathematics, 2025(1), 7706431. https://doi.org/10.1155/jama/7706431
  • Okut, H. (2021). “Deep Learning For Subtyping And Prediction of Diseases: Long-Short Term Memory”, Deep Learning Applications. https://doi.org/10.5772/intechopen.96180
  • Ozbayoglu, A. M., Gudelek, M. U., & Sezer, O. B. (2020). “Deep learning for financial applications: A survey”, Applied Soft Computing Journal, 93, 106384. https://doi.org/10.1016/j.asoc.2020.106384
  • P. Gambhir, A. Dev and P. Bansal, "Investigating Activation Functions to Enhance Speaker Identification with LSTM Networks," 2023 26th Conference of the Oriental COCOSDA International Committee for the Co-ordination and Standardisation of Speech Databases and Assessment Techniques (O-COCOSDA), Delhi, India, 2023, pp. 1-7, doi: https://doi.org/10.1109/O-COCOSDA60357.2023.10482931
  • Pagano, M. (1993). “Financial markets and growth: An overview”, European Economic Review, 37(1993), 613-622. North-Holland. http://doi.org/10.1016/0014-2921(93)90051-B
  • Prasetyowati, S. A. D., Ismail, M., & Badieah, B. (2022). “Implementation Of Least Mean Square Adaptive Algorithm On Covid-19 Prediction”, JUITA: Jurnal Informatika, 10(1), 139. https://doi.org/10.30595/juita.v10i1.11963
  • Safa, R. P., & Oetama, R. S. (2024, August). “Hybrid LSTM Model for Predicting Indonesian Telecommunication Companies Stock Price” In 2024 International Conference on Artificial Intelligence, Blockchain, Cloud Computing, and Data Analytics (ICoABCD) (pp. 184-189). IEEE. https://doi.org/10.1109/ICoABCD63526.2024.10704303
  • Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). “Financial Time Series Forecasting With Deep Learning: A Systematic Literature Review: 2005–2019”, Applied Soft Computing, 90, 106181. https://doi.org/10.1016/j.asoc.2020.106181
  • Şimşek, A. İ. (2024). “Predicting Bitcoin Price: Comparative Analysis of Machine Learning and Deep Learning Models”, Savunma Bilimleri Dergisi, 20(2), 327-342. https://doi.org/10.17134/khosbd.1394501
  • Sun, Z., Huang, J., Xiao, C., & Yang, C. (2024). “HaTT: Hadamard avoiding TT recompression”, arXiv preprint arXiv:2410.04385. https://doi.org/10.48550/arXiv.2410.04385
  • Sunny, M. A. I., Maswood, M. M. S., & Alharbi, A. G. (2020). “Deep Learning-Based Stock Price Prediction Using LSTM and Bi-Directional LSTM Mode”, In 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), 87-92. https://doi.org/10.1109/NILES50944.2020.9257950
  • Tampu, I., Eklund, A., & Haj‐Hosseini, N. (2022). “Inflation Of Test Accuracy Due To Data Leakage In Deep Learning-Based Classification Of Oct Images”, Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01618-6
  • Utomo, J., Wijaya, A. P., Adinata, K. N., Huang, K. N., Margaretha, H., & Ferdinand, F. V. (2024). “Analysis of Closing Stock Price Predictions Energy Sector in Indonesia Using Convolutional Neural Network”, In 2024 2nd International Conference on Technology Innovation and Its Applications (ICTIIA) (pp. 1-6). IEEE. https://doi.org/10.1109/ICTIIA61827.2024.10761267
  • Wang, P., Zheng, X., Ai, G., Liu, D., & Zhu, B. (2020). “Time Series Prediction For The Epidemic Trends of COVID-19 Using The Improved LSTM Deep Learning Method: Case Studies In Russia, Peru and Iran”, Chaos, Solitons & Fractals, 140, 110214. https://doi.org/10.1016/j.chaos.2020.110214
  • Xu, X., & Yoneda, M. (2019). “Multitask Air-Quality Prediction Based on LSTM-Autoencoder Model”, IEEE Transactions On Cybernetics, 51(5), 2577-2586. https://doi.org/10.1109/TCYB.2019.2945999
  • Yuan, Q., He, M., Chen, Z., Liu, M., & Chen, X. (2025). “A Real-Time Prediction Method for Rate of Penetration Sequence in Offshore Deep Wells Drilling Based on Attention Mechanism-Enhanced BILSTM Model”, Ocean Engineering, 325, 120820. https://doi.org/10.1016/j.oceaneng.2025.120820
  • Yurtsever, M. (2021). “Gold price forecasting using LSTM, Bi-LSTM and GRU”, Avrupa Bilim ve Teknoloji Dergisi, (31), 341-347. https://doi.org/10.31590/ejosat.959405
  • Zaheer, S., Anjum, N., Hussain, S., Algarni, A. D., Iqbal, J., Bourouis, S., & Ullah, S. S. (2023). “A Multi Parameter Forecasting for Stock Time Series Data Using LSTM and Deep Learning Model”, Mathematics, 11(3), 590. https://doi.org/10.3390/math11030590
  • Zhang, F., Wu, S., Liu, J., Wang, C., Guo, Z., Xu, A.,& Pan, X. (2021). “Predicting Soil Moisture Content Over Partially Vegetation Covered Surfaces From Hyperspectral Data with Deep Learning”, Soil Science Society of America Journal, 85(4), 989-1001. https://doi.org/10.1002/saj2.20193
  • Zhou, C. (2023). “Long Short-Term Memory Applied on Amazon's Stock Prediction”, Highlights in Science, Engineering and Technology, 34, 71-76. https://doi.org/10.54097/hset.v34i.5380 https://www.borsaistanbul.com/tr/endeks-detay/66/bist-30-agirlik-sinirlamali-10 (Erişim Tarihi: 12.02.2025)
There are 37 citations in total.

Details

Primary Language English
Subjects Time-Series Analysis, Monetary-Banking, Finance
Journal Section Articles
Authors

Salih Rıdvan Yılmaz 0000-0002-3044-840X

Nurullah Uçkun 0000-0001-5073-5644

Publication Date August 30, 2025
Submission Date March 18, 2025
Acceptance Date May 20, 2025
Published in Issue Year 2025 Volume: 7 Issue: 2

Cite

APA Yılmaz, S. R., & Uçkun, N. (2025). Predicting Stock Prices in The Turkish Banking Sector with Artificial Neural Networks: A Comparison of Multi-Layered LSTM Models. Ekonomi İşletme Ve Maliye Araştırmaları Dergisi, 7(2), 169-182.