Research Article
BibTex RIS Cite
Year 2024, Volume: 20 Issue: 2, 91 - 113, 27.12.2024

Abstract

References

  • [1] Hamilton, J.M. (2011). The challenges of deep-water arctic development. International Journal of Offshore and Polar Engineering, 21.
  • [2] Morgunova, M. (2015). Arctic offshore hydrocarbon resource development: Past, present and vision of the future (Doctoral dissertation, KTH Royal Institute of Technology).
  • [3] Dziublo, A., & Storozheva, A. (2021). Technologies for efficient development of hydrocarbon resources on the Arctic and sub-Arctic shelf of Russia. In IOP Conference Series: Earth and Environmental Science, 678, 012001).
  • [4] Armenteros, M., Marzo-Pérez, D., Pérez-García, J.A., Schwing, P.T., Ruiz-Abierno, A., Díaz-Asencio, M., ... Murawski, S.A. (2024). Setting an Environmental Baseline for the Deep-Sea Slope Offshore Northwestern Cuba (Southeastern Gulf of Mexico) Using Sediments and Nematode Diversity. Thalassas: An International Journal of Marine Sciences, 1-15.
  • [5] Zecheng, W.A.N.G., Jiang, Q., Jufeng, W.A.N.G., Guohui, L.O.N.G., Cheng, H., Yizuo, S.H.I., ...Huang, L. (2024). Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China. Petroleum Exploration and Development, 51, 31-43.
  • [6] Jacobson, S.R. (1991). Petroleum source rocks and organic facies. In: Source and Migration Processes and Evaluation Techniques, Merril, R.K. (Ed.), Tulsa, Treatise of Petroleum Geology, American Association of Petroleum Geologists, 3-11.
  • [7] Deaf, A.S., Tahoun, S.S., Gentzis, T., Carvajal-Ortiz, H., Harding, I.C., Marshall, J.E., & Ocubalidet, S. (2020). Organic geochemical, palynofacies, and petrographic analyses examining the hydrocarbon potential of the Kharita Formation (Albian) in the Matruh Basin, northwestern Egypt. Marine and Petroleum Geology, 112, 104087.
  • [8] Esegbue, O., Jones, D.M., van Bergen, P.F., & Kolonic, S. (2020). Quantitative diamondoid analysis indicates oil cosourcing from a deep petroleum system onshore Niger Delta Basin. AAPG Bulletin, 104, 1231-1259.
  • [9] Katz, B., Gao, L., Little, J., & Zhao, Y.R. (2021). Geology still matters–unconventional petroleum system disappointments and failures. Unconventional Resources, 1, 18-38.
  • [10] Diab, A.I., Sanuade, O., & Radwan, A.E. (2023). An integrated source rock potential, sequence stratigraphy, and petroleum geology of (Agbada-Akata) sediment succession, Niger delta: application of well logs aided by 3D seismic and basin modeling. Journal of Petroleum Exploration and Production Technology, 13, 237-257. [11] Tissot, B.P., & Welte, D.H. (1984). Petroleum Formation and Occurrence. Springer-Verlag, Berlin. 699.
  • [12] Huc, A.Y. (1990). Understanding Organic Facies: A Key to Improved Quantitative Petroleum Evaluation of Sedimentary Basins: Chapter 1. [13] Hunt, J.M. (1995). Petroleum geochemistry and geology. W.H. Freeman and Company, New York, 743.
  • [14] Follows, B., & Tyson, R.V. (1998). Organic facies of the Asbian (early Carboniferous) Queensferry Beds, Lower Oil Shale Group, South Queensferry, Scotland, and a brief comparison with other Carboniferous North Atlantic oil shale deposits. Organic Geochemistry, 29, 821-844.
  • [15] Peters, K.E., Schenk, O., Hosford Scheirer, A., Wygrala, B., & Hantschel, T. (2017). Basin and petroleum system modeling. Springer handbook of petroleum technology, 381-417.
  • [16] Stasiuk, L.D. (1996). Organic facies in black shale of Devonian-Mississippian Bakken Formation, southeastern Saskatchewan. Geological Survey of Canada. Current Research, 15-22.
  • [17] Stasiuk, L.D., & Fowler, M.G. (2004). Organic facies in Devonian and Mississippian strata of Western Canada Sedimentary Basin: relation to kerogen type, paleoenvironment, and paleogeography. Bulletin of Canadian Petroleum Geology, 52, 234-255.
  • [18] Fang, H., Jianyu, C., Yongchuan, S., & Yaozong, L. (1993). Application of organic facies studies to sedimentary basin analysis: a case study from the Yitong Graben, China. Organic Geochemistry, 20, 27-42.
  • [19] Jones, R.W. (1987). Organic facies: advanced in Petroleum Geochemistry (Brooks, J., and Welte, D. Eds.).
  • [20] Jones, R.W., & Demaison, G.J. (1982). Organic Facies - stratigraphic concepts and exploration tool. In: Proceedings of the Second ASCOPE Conference and Exhibition, Saldivar-Sali, A. (Ed.)., Manilla, Asean Council on Petroleum, 51-68.
  • [21] Jones, R.W. (1984). Comparison of carbonate and shale source rocks. AAPG Bull. 68,163–80. https://doi.org/10.1306/AD460EA4-16F7-11D7-8645000102C1865D
  • [22] Pepper, A.S., & Corvi, P.J. (1995). Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Marine and petroleum geology, 12, 291-319.
  • [23] Tuweni, A.O., & Tyson, R.V. (1994). Organic facies variations in the Westbury Formation (Rhaetic, Bristol Channel, SW England). Organic Geochemistry, 21, 1001-1014.
  • [24] Baskin, D.K. (1997). Atomic H/C ratio of kerogen as an estimate of thermal maturity and organic matter conversion. AAPG bulletin, 81, 1437-1450.
  • [25] Krejci‐Graf, K. (1963). Origin of oil. Geophysical Prospecting, 11, 244-275.
  • [26] Krejci-Graf, K. (1964). Geochemical diagnosis of facies. Proceedings of the Yorkshire Geological Society, 34, 469-521.
  • [27] Krejci-Graf, K. (1975). Geochemical facies of sediments. Soil Science, 119, 20-23.
  • [28] Breger, I.A., & Brown, A. (1963). Section of Geological Sciences: Distribution and types of organic matter in a barred Marıne Basin. Transactions of the New York Academy of Sciences, 25, 741-755.
  • [29] Tissot, B., Durand, B., Espitalie, I., & Comba, A. (1974). Influence of mature and. diagenesis of organic matter in formation of petroleum. A.A.P.G. Bull., 58, 499-506.
  • [30] Parparova, G., & Neruchev, S. (1977). Bases of A Genetıc Classıfıcatıon of The Organıc Matter Dıspersed In Rocks. Geologıya I Geofızıka, 5.
  • [31] Cornelius, C.D. (1978). Muttergesteinfazies als parameter der erdölbildung. Erdoel-Erdgas-Zeitschrift, 3, 90–94. [32] Middelburg, J.J., Calvert, S.E., & Karlin, R. (1991). Organic-rich transitional facies in silled basins: Response to sea-level change. Geology, 19, 679-682.
  • [33] Pasley, M.A. (1991). Organic matter variation within depositional sequences stratigraphic significance of implication to petroleum source rock prediction. The Louisiana State, University and agricultural and MechanicalCol. Louisiana (USA). PhD. Thesis. 150 pp.
  • [34] Cornford, C. (1979). Organic deposition at a continental rise: organic geochemical interpretation and synthesis at DSDP Site 397, eastern North Atlantic. Initial Reports of the Deep Sea Drilling Project. Part. 1: Washington (US GovernmentPrinting Office), 503-510.
  • [35] Rogers, M.A. (1980). Application of organic facies concepts to hydrocarbon source rocks evaluation. In: Proceedings of the 10th World Petroleum Congress, Bucharest 1979, Heyden, London, 2, 23-30.
  • [36] Jones, R.W. (1983). Organic matter characteristics near the shelf-slope boundary. Society of Economic Paleontologists and Mineralogists(SEPM), Special Publication, 33, 391– 405.
  • [37] Tyson, R.V. (1995). Sedimentary Organic Matter. Organic facies and palynofacies. Chapman and Hall, Londons, 615.
  • [38] Habib, D. (1982). Sedimentary supply origin of cretaceous black shales. In: Nature and origin of Cretaceous Carbon-rich Facies, Schlanger S.O., Cita M.B. (Eds.), Academic Press, London, 113-27.
  • [39] Powell, T.G., 1987. Depositional controls on source rocks character and crude oil composition. In: World Petroleum, 12, Congress, Proceedings, Houston, 2, 31-42.
  • [40] Peters, K.E., Walters, C.C., & Moldowan, J.M. (2005). The Biomarker Guide. Cambridge University, New York, 1132.
  • [41] Zou, C., Dong, D., Wang, S., Li, J., Li, X., Wang, Y., ... Cheng, K. (2010). Geological characteristics and resource potential of shale gas in China. Petroleum exploration and development, 37, 641-653.
  • [42] Froidl, F., Littke, R., Baniasad, A., Zheng, T., Röth, J., Böcker, J., ... Strauss, H. (2021). Peculiar Berriasian “Wealden” Shales of northwest Germany: organic facies, depositional environment, thermal maturity and kinetics of petroleum generation. Marine and Petroleum Geology, 124, 104819.
  • [43] Ehsan, M., Gu, H., Ali, A., Akhtar, M.M., Abbasi, S.S., Miraj, M.A.F., & Shah, M. (2021). An integrated approach to evaluate the unconventional hydrocarbon generation potential of the Lower Goru Formation (Cretaceous) in Southern Lower Indus basin, Pakistan. Journal of Earth System Science, 130, 90.
  • [44] Li, C., Zeng, J., Liu, H., Li, H., Bu, X., & Liu, S. (2023). Sedimentary Organic Facies Division and Hydrocarbon-Generation Potential of Source Rocks in Coal-Bearing Strata─ A Case Study of the Upper Paleozoic in Huanghua Depression, Bohai Basin, China. ACS omega, 8, 28715-28732.
  • [45] dos Santos, M.A.M., do Nascimento, C.A., Souza, E.S., Martins, L.L., Ribeiro, H.J.P.S., & Rodrigues, R. (2020). Degradation-resistant biomarkers in the Pirambóia Formation tar sands (Triassic) and their correlation with organic facies of the Irati Formation source rocks (Permian), Paraná Basin (Brazil). Journal of South American Earth Sciences, 104, 102873.
  • [46] Adeyilola, A., Zakharova, N., Liu, K., Gentzis, T., Carvajal-Ortiz, H., Ocubalidet, S., & Harrison III, W.B. (2022). Hydrocarbon potential and Organofacies of the Devonian Antrim Shale, Michigan Basin. International Journal of Coal Geology, 249, 103905.
  • [47] Ogbesejana, A.B., Liu, B., Gao, S., Akinyemi, S.A., Bello, O.M., & Song, Y. (2023). Applying biomarkers as paleoenvironmental indicators to reveal the organic matter enrichment of shale during deep energy exploration: a review. RSC advances, 13, 25635-25659.
  • [48] Menezes, T.R., & Mendonça Filho, J.G. (2004). Aplicação da faciologia orgânica na análise paleoceanográfica do talude continental superior recente da Bacia de Campos - RJ. Revista Brasileira de Paleontologia, 7, 177-188.
  • [49] Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic geochemistry, 38, 719-833.
  • [50] Filho, J.G.M., Menezes, T.R., de Oliveira Mendonça, J., de Oliveira, A.D., da Silva, T.F., Rondon, N.F., & da Silva, F.S. (2012). Organic facies: palynofacies and organic geochemistry approaches. In Geochemistry–Earth’s system processe, 211-248.
  • [51] de Andrade, C.L.N., Cardoso, T.R.M., Santos, R.R., Dino, R., & de Jesus Machado, A. (2020). Organic facies and palynology from the middle to late Devonian of the Pimenteiras Formation, Parnaíba Basin, Brazil. Journal of South American Earth Sciences, 99, 102481.
  • [52] Gonzalez, L.D.C., Mastalerz, M., & Mendonça Filho, J.G. (2020). Application of organic facies and biomarkers in characterization of paleoenvironmental conditions and maturity of sediments from the Codó Formation in the west-central part of the São Luís Basin, Brazil. International Journal of Coal Geology, 225, 103482.
  • [53] Wesenlund, F., Grundvåg, S.A., Engelschiøn, V.S., Thießen, O., & Pedersen, J.H. (2021). Linking facies variations, organic carbon richness and bulk bitumen content–A case study of the organic-rich Middle Triassic shales from eastern Svalbard. Marine and Petroleum Geology, 132, 105168.
  • [54] Amiri, S., & Alipour, M. (2023). Organic facies and organic petrographic characteristics of the Pabdeh Formation in the Kilur-Karim Oilfield, SW Iran. Journal of Stratigraphy and Sedimentology Researches, 39, 1-14.
  • [55] Saleh, R.A., Makled, W.A., Moustafa, T.F., Ela, N.M.A., & Tahoun, S.S. (2023). Organic facies and hydrocarbon source rock potentiality of the Neogene succession in the Central South Mediterranean, offshore Nile Delta Basin, Egypt. Journal of African Earth Sciences, 207, 105066.
  • [56] Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W.M. (2021). How to do bibliometric analysis: Overview and guidelines. Journal of business studies, 133, 285-296.
  • [57] Alper Ay, F. (2024). The relationship between work motivation and productivity: Bibliometric analysis of articles from 1953 to 2024. Human Systems Management, (Preprint), 1-22.
  • [58] Lim, W. M., Rasul, T., Kumar, S., & Ala, M. (2022). Past, present, and future of customer engagement. Journal of Business Research, 140, 439-458.
  • [59] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of informetrics, 12(4), 1160-1177.
  • [60] Radke, M., Welte, D.H., & Willsch, H. (1986). Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type. Organic Geochemistry, 10, 51-63.
  • [61] Peters, K.E., & Moldowan, J.M. (1991). Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Organic geochemistry, 17, 47-61.
  • [62] Radke, M. (1988). Application of aromatic compounds as maturity indicators in source rocks and crude oils. Marine and petroleum geology, 5, 224-236.
  • [63] Yin, Y., Lan, L., Wang, D., Chen, Y., Liu, Y., Li, Y., ... & Liu, J. (2024). Formation environment and hydrocarbon potential of the Paleogene Enping Formation coal measures in the Zhu I Depression of northern South China Sea. Acta Oceanologica Sinica, 43(4), 119-135.
  • [64] Babai, A. M. A., Gebbayin, O. I. M. F. A., Ehinola, O. A., & Ibrahim, M. A. E. (2024). Source rock characterization and biomarkers analysis of Adar and Galhak Formations, Rawat central sub-basin, White Nile basin, Sudan. Journal of African Earth Sciences, 210, 105-146.
  • [65] Wang, X., Liu, G., Wang, F., Wang, X., Sun, M., Song, Z., Chen, R., & Geng, M. (2024). Geochemical characteristics and classification of Oligocene source rocks with different facies in Bozhong Sag, Bohai Bay Basin, East China. Journal of Asian Earth Sciences, 276, 106304. https://doi.org/10.1016/j.jseaes.2024.106304

Bibliometric Analysis of Organic Facies Studies Between 1979-2024

Year 2024, Volume: 20 Issue: 2, 91 - 113, 27.12.2024

Abstract

Organic facies constitute criteria aimed at assessing the distribution of organic accumulations across geological time and space, utilizing physical, chemical, and biological processes. In the realm of petroleum geology research, the assessment of organic facies stands as pivotal in determining the hydrocarbon source rock potential within a sedimentary basin or succession, employing organic petrographic and geochemical methodologies. Originally initiated by researchers focusing on coal-bearing units, this subject subsequently evolved into a cornerstone of petroleum geology studies. This study endeavors to furnish a comprehensive overview of organic facies research through bibliometric analysis, scrutinizing the evolution of organic facies, pinpointing significant contributions, and delineating the most fruitful research domains. Leveraging the Scopus database, this study conducted analyses utilizing the R Studio program and VOSviewer tool. The countries leading in terms of article count are China, the United States, and Brazil. The paper titled "Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type," authored by Radke et al. [1] and published in the journal Organic Geochemistry, emerges as the most cited study. "Organic Geochemistry" emerges as the journal with the highest publication count in the field of organic facies, with China University of Petroleum emerging as the institution spearheading research in this domain. Since 2010, organic facies studies have found application in evaluating unconventional energy resources, making substantial contributions to the petroleum sector. The findings of this study furnish professionals and researchers in the field of organic facies with crucial insights into the current landscape and advancements, while also charting a course for future research endeavors.

References

  • [1] Hamilton, J.M. (2011). The challenges of deep-water arctic development. International Journal of Offshore and Polar Engineering, 21.
  • [2] Morgunova, M. (2015). Arctic offshore hydrocarbon resource development: Past, present and vision of the future (Doctoral dissertation, KTH Royal Institute of Technology).
  • [3] Dziublo, A., & Storozheva, A. (2021). Technologies for efficient development of hydrocarbon resources on the Arctic and sub-Arctic shelf of Russia. In IOP Conference Series: Earth and Environmental Science, 678, 012001).
  • [4] Armenteros, M., Marzo-Pérez, D., Pérez-García, J.A., Schwing, P.T., Ruiz-Abierno, A., Díaz-Asencio, M., ... Murawski, S.A. (2024). Setting an Environmental Baseline for the Deep-Sea Slope Offshore Northwestern Cuba (Southeastern Gulf of Mexico) Using Sediments and Nematode Diversity. Thalassas: An International Journal of Marine Sciences, 1-15.
  • [5] Zecheng, W.A.N.G., Jiang, Q., Jufeng, W.A.N.G., Guohui, L.O.N.G., Cheng, H., Yizuo, S.H.I., ...Huang, L. (2024). Hydrocarbon accumulation characteristics in basement reservoirs and exploration targets of deep basement reservoirs in onshore China. Petroleum Exploration and Development, 51, 31-43.
  • [6] Jacobson, S.R. (1991). Petroleum source rocks and organic facies. In: Source and Migration Processes and Evaluation Techniques, Merril, R.K. (Ed.), Tulsa, Treatise of Petroleum Geology, American Association of Petroleum Geologists, 3-11.
  • [7] Deaf, A.S., Tahoun, S.S., Gentzis, T., Carvajal-Ortiz, H., Harding, I.C., Marshall, J.E., & Ocubalidet, S. (2020). Organic geochemical, palynofacies, and petrographic analyses examining the hydrocarbon potential of the Kharita Formation (Albian) in the Matruh Basin, northwestern Egypt. Marine and Petroleum Geology, 112, 104087.
  • [8] Esegbue, O., Jones, D.M., van Bergen, P.F., & Kolonic, S. (2020). Quantitative diamondoid analysis indicates oil cosourcing from a deep petroleum system onshore Niger Delta Basin. AAPG Bulletin, 104, 1231-1259.
  • [9] Katz, B., Gao, L., Little, J., & Zhao, Y.R. (2021). Geology still matters–unconventional petroleum system disappointments and failures. Unconventional Resources, 1, 18-38.
  • [10] Diab, A.I., Sanuade, O., & Radwan, A.E. (2023). An integrated source rock potential, sequence stratigraphy, and petroleum geology of (Agbada-Akata) sediment succession, Niger delta: application of well logs aided by 3D seismic and basin modeling. Journal of Petroleum Exploration and Production Technology, 13, 237-257. [11] Tissot, B.P., & Welte, D.H. (1984). Petroleum Formation and Occurrence. Springer-Verlag, Berlin. 699.
  • [12] Huc, A.Y. (1990). Understanding Organic Facies: A Key to Improved Quantitative Petroleum Evaluation of Sedimentary Basins: Chapter 1. [13] Hunt, J.M. (1995). Petroleum geochemistry and geology. W.H. Freeman and Company, New York, 743.
  • [14] Follows, B., & Tyson, R.V. (1998). Organic facies of the Asbian (early Carboniferous) Queensferry Beds, Lower Oil Shale Group, South Queensferry, Scotland, and a brief comparison with other Carboniferous North Atlantic oil shale deposits. Organic Geochemistry, 29, 821-844.
  • [15] Peters, K.E., Schenk, O., Hosford Scheirer, A., Wygrala, B., & Hantschel, T. (2017). Basin and petroleum system modeling. Springer handbook of petroleum technology, 381-417.
  • [16] Stasiuk, L.D. (1996). Organic facies in black shale of Devonian-Mississippian Bakken Formation, southeastern Saskatchewan. Geological Survey of Canada. Current Research, 15-22.
  • [17] Stasiuk, L.D., & Fowler, M.G. (2004). Organic facies in Devonian and Mississippian strata of Western Canada Sedimentary Basin: relation to kerogen type, paleoenvironment, and paleogeography. Bulletin of Canadian Petroleum Geology, 52, 234-255.
  • [18] Fang, H., Jianyu, C., Yongchuan, S., & Yaozong, L. (1993). Application of organic facies studies to sedimentary basin analysis: a case study from the Yitong Graben, China. Organic Geochemistry, 20, 27-42.
  • [19] Jones, R.W. (1987). Organic facies: advanced in Petroleum Geochemistry (Brooks, J., and Welte, D. Eds.).
  • [20] Jones, R.W., & Demaison, G.J. (1982). Organic Facies - stratigraphic concepts and exploration tool. In: Proceedings of the Second ASCOPE Conference and Exhibition, Saldivar-Sali, A. (Ed.)., Manilla, Asean Council on Petroleum, 51-68.
  • [21] Jones, R.W. (1984). Comparison of carbonate and shale source rocks. AAPG Bull. 68,163–80. https://doi.org/10.1306/AD460EA4-16F7-11D7-8645000102C1865D
  • [22] Pepper, A.S., & Corvi, P.J. (1995). Simple kinetic models of petroleum formation. Part I: oil and gas generation from kerogen. Marine and petroleum geology, 12, 291-319.
  • [23] Tuweni, A.O., & Tyson, R.V. (1994). Organic facies variations in the Westbury Formation (Rhaetic, Bristol Channel, SW England). Organic Geochemistry, 21, 1001-1014.
  • [24] Baskin, D.K. (1997). Atomic H/C ratio of kerogen as an estimate of thermal maturity and organic matter conversion. AAPG bulletin, 81, 1437-1450.
  • [25] Krejci‐Graf, K. (1963). Origin of oil. Geophysical Prospecting, 11, 244-275.
  • [26] Krejci-Graf, K. (1964). Geochemical diagnosis of facies. Proceedings of the Yorkshire Geological Society, 34, 469-521.
  • [27] Krejci-Graf, K. (1975). Geochemical facies of sediments. Soil Science, 119, 20-23.
  • [28] Breger, I.A., & Brown, A. (1963). Section of Geological Sciences: Distribution and types of organic matter in a barred Marıne Basin. Transactions of the New York Academy of Sciences, 25, 741-755.
  • [29] Tissot, B., Durand, B., Espitalie, I., & Comba, A. (1974). Influence of mature and. diagenesis of organic matter in formation of petroleum. A.A.P.G. Bull., 58, 499-506.
  • [30] Parparova, G., & Neruchev, S. (1977). Bases of A Genetıc Classıfıcatıon of The Organıc Matter Dıspersed In Rocks. Geologıya I Geofızıka, 5.
  • [31] Cornelius, C.D. (1978). Muttergesteinfazies als parameter der erdölbildung. Erdoel-Erdgas-Zeitschrift, 3, 90–94. [32] Middelburg, J.J., Calvert, S.E., & Karlin, R. (1991). Organic-rich transitional facies in silled basins: Response to sea-level change. Geology, 19, 679-682.
  • [33] Pasley, M.A. (1991). Organic matter variation within depositional sequences stratigraphic significance of implication to petroleum source rock prediction. The Louisiana State, University and agricultural and MechanicalCol. Louisiana (USA). PhD. Thesis. 150 pp.
  • [34] Cornford, C. (1979). Organic deposition at a continental rise: organic geochemical interpretation and synthesis at DSDP Site 397, eastern North Atlantic. Initial Reports of the Deep Sea Drilling Project. Part. 1: Washington (US GovernmentPrinting Office), 503-510.
  • [35] Rogers, M.A. (1980). Application of organic facies concepts to hydrocarbon source rocks evaluation. In: Proceedings of the 10th World Petroleum Congress, Bucharest 1979, Heyden, London, 2, 23-30.
  • [36] Jones, R.W. (1983). Organic matter characteristics near the shelf-slope boundary. Society of Economic Paleontologists and Mineralogists(SEPM), Special Publication, 33, 391– 405.
  • [37] Tyson, R.V. (1995). Sedimentary Organic Matter. Organic facies and palynofacies. Chapman and Hall, Londons, 615.
  • [38] Habib, D. (1982). Sedimentary supply origin of cretaceous black shales. In: Nature and origin of Cretaceous Carbon-rich Facies, Schlanger S.O., Cita M.B. (Eds.), Academic Press, London, 113-27.
  • [39] Powell, T.G., 1987. Depositional controls on source rocks character and crude oil composition. In: World Petroleum, 12, Congress, Proceedings, Houston, 2, 31-42.
  • [40] Peters, K.E., Walters, C.C., & Moldowan, J.M. (2005). The Biomarker Guide. Cambridge University, New York, 1132.
  • [41] Zou, C., Dong, D., Wang, S., Li, J., Li, X., Wang, Y., ... Cheng, K. (2010). Geological characteristics and resource potential of shale gas in China. Petroleum exploration and development, 37, 641-653.
  • [42] Froidl, F., Littke, R., Baniasad, A., Zheng, T., Röth, J., Böcker, J., ... Strauss, H. (2021). Peculiar Berriasian “Wealden” Shales of northwest Germany: organic facies, depositional environment, thermal maturity and kinetics of petroleum generation. Marine and Petroleum Geology, 124, 104819.
  • [43] Ehsan, M., Gu, H., Ali, A., Akhtar, M.M., Abbasi, S.S., Miraj, M.A.F., & Shah, M. (2021). An integrated approach to evaluate the unconventional hydrocarbon generation potential of the Lower Goru Formation (Cretaceous) in Southern Lower Indus basin, Pakistan. Journal of Earth System Science, 130, 90.
  • [44] Li, C., Zeng, J., Liu, H., Li, H., Bu, X., & Liu, S. (2023). Sedimentary Organic Facies Division and Hydrocarbon-Generation Potential of Source Rocks in Coal-Bearing Strata─ A Case Study of the Upper Paleozoic in Huanghua Depression, Bohai Basin, China. ACS omega, 8, 28715-28732.
  • [45] dos Santos, M.A.M., do Nascimento, C.A., Souza, E.S., Martins, L.L., Ribeiro, H.J.P.S., & Rodrigues, R. (2020). Degradation-resistant biomarkers in the Pirambóia Formation tar sands (Triassic) and their correlation with organic facies of the Irati Formation source rocks (Permian), Paraná Basin (Brazil). Journal of South American Earth Sciences, 104, 102873.
  • [46] Adeyilola, A., Zakharova, N., Liu, K., Gentzis, T., Carvajal-Ortiz, H., Ocubalidet, S., & Harrison III, W.B. (2022). Hydrocarbon potential and Organofacies of the Devonian Antrim Shale, Michigan Basin. International Journal of Coal Geology, 249, 103905.
  • [47] Ogbesejana, A.B., Liu, B., Gao, S., Akinyemi, S.A., Bello, O.M., & Song, Y. (2023). Applying biomarkers as paleoenvironmental indicators to reveal the organic matter enrichment of shale during deep energy exploration: a review. RSC advances, 13, 25635-25659.
  • [48] Menezes, T.R., & Mendonça Filho, J.G. (2004). Aplicação da faciologia orgânica na análise paleoceanográfica do talude continental superior recente da Bacia de Campos - RJ. Revista Brasileira de Paleontologia, 7, 177-188.
  • [49] Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic geochemistry, 38, 719-833.
  • [50] Filho, J.G.M., Menezes, T.R., de Oliveira Mendonça, J., de Oliveira, A.D., da Silva, T.F., Rondon, N.F., & da Silva, F.S. (2012). Organic facies: palynofacies and organic geochemistry approaches. In Geochemistry–Earth’s system processe, 211-248.
  • [51] de Andrade, C.L.N., Cardoso, T.R.M., Santos, R.R., Dino, R., & de Jesus Machado, A. (2020). Organic facies and palynology from the middle to late Devonian of the Pimenteiras Formation, Parnaíba Basin, Brazil. Journal of South American Earth Sciences, 99, 102481.
  • [52] Gonzalez, L.D.C., Mastalerz, M., & Mendonça Filho, J.G. (2020). Application of organic facies and biomarkers in characterization of paleoenvironmental conditions and maturity of sediments from the Codó Formation in the west-central part of the São Luís Basin, Brazil. International Journal of Coal Geology, 225, 103482.
  • [53] Wesenlund, F., Grundvåg, S.A., Engelschiøn, V.S., Thießen, O., & Pedersen, J.H. (2021). Linking facies variations, organic carbon richness and bulk bitumen content–A case study of the organic-rich Middle Triassic shales from eastern Svalbard. Marine and Petroleum Geology, 132, 105168.
  • [54] Amiri, S., & Alipour, M. (2023). Organic facies and organic petrographic characteristics of the Pabdeh Formation in the Kilur-Karim Oilfield, SW Iran. Journal of Stratigraphy and Sedimentology Researches, 39, 1-14.
  • [55] Saleh, R.A., Makled, W.A., Moustafa, T.F., Ela, N.M.A., & Tahoun, S.S. (2023). Organic facies and hydrocarbon source rock potentiality of the Neogene succession in the Central South Mediterranean, offshore Nile Delta Basin, Egypt. Journal of African Earth Sciences, 207, 105066.
  • [56] Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W.M. (2021). How to do bibliometric analysis: Overview and guidelines. Journal of business studies, 133, 285-296.
  • [57] Alper Ay, F. (2024). The relationship between work motivation and productivity: Bibliometric analysis of articles from 1953 to 2024. Human Systems Management, (Preprint), 1-22.
  • [58] Lim, W. M., Rasul, T., Kumar, S., & Ala, M. (2022). Past, present, and future of customer engagement. Journal of Business Research, 140, 439-458.
  • [59] Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of informetrics, 12(4), 1160-1177.
  • [60] Radke, M., Welte, D.H., & Willsch, H. (1986). Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type. Organic Geochemistry, 10, 51-63.
  • [61] Peters, K.E., & Moldowan, J.M. (1991). Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Organic geochemistry, 17, 47-61.
  • [62] Radke, M. (1988). Application of aromatic compounds as maturity indicators in source rocks and crude oils. Marine and petroleum geology, 5, 224-236.
  • [63] Yin, Y., Lan, L., Wang, D., Chen, Y., Liu, Y., Li, Y., ... & Liu, J. (2024). Formation environment and hydrocarbon potential of the Paleogene Enping Formation coal measures in the Zhu I Depression of northern South China Sea. Acta Oceanologica Sinica, 43(4), 119-135.
  • [64] Babai, A. M. A., Gebbayin, O. I. M. F. A., Ehinola, O. A., & Ibrahim, M. A. E. (2024). Source rock characterization and biomarkers analysis of Adar and Galhak Formations, Rawat central sub-basin, White Nile basin, Sudan. Journal of African Earth Sciences, 210, 105-146.
  • [65] Wang, X., Liu, G., Wang, F., Wang, X., Sun, M., Song, Z., Chen, R., & Geng, M. (2024). Geochemical characteristics and classification of Oligocene source rocks with different facies in Bozhong Sag, Bohai Bay Basin, East China. Journal of Asian Earth Sciences, 276, 106304. https://doi.org/10.1016/j.jseaes.2024.106304
There are 62 citations in total.

Details

Primary Language English
Subjects Data Mining and Knowledge Discovery
Journal Section Articles
Authors

Nazan Yalcın Erik 0000-0001-7849-8660

Faruk Ay 0000-0002-4201-4422

Publication Date December 27, 2024
Submission Date August 5, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024 Volume: 20 Issue: 2

Cite

APA Yalcın Erik, N., & Ay, F. (2024). Bibliometric Analysis of Organic Facies Studies Between 1979-2024. Electronic Letters on Science and Engineering, 20(2), 91-113.