BibTex RIS Cite

-

Year 2013, Volume: 3 Issue: 5, 7 - 15, 14.02.2013

Abstract

In this study, a total power radiometer was established to measure the value of "excess noise source" (ENR) of a semiconductor noise source in a traceable manner. The test of this system which can measure the noise source at a time is performed between the frequency range of 50 MHz to 26.5 GHz, accepted as highly wide, by using standard noise sources with a nominal value of 15 dB ENR. The difference between the actual ENR value and the calculated ENR value of the known noise source was obtained as ≤0.30 by using the developed total power radiometer. Uncertainty of the measured ENR values are calculated in the range of 0.13 dB and 0.34 dB, and the difference between the actual value and the measured value was found in the uncertainty values

References

  • Einstein A., “Investigations on the theory of the Brownian movement I (On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat)”, Ann.d.Phys., 17, 549-560, 1905. (Edited by R. Fürth, Newyork, Dower Publications Inc. 1956).
  • Johnson J. B., “Thermal agitation of electricity in conductors”, Physical Review, 32, 97-109, 1928.
  • Nyquist H., “Thermal agitation of electric charge in conductors”, Physical Review, 32, 110-113, 1928.
  • Dicke R. H., “The measurement of thermal radiation at microwave frequencies”, Rev. Sci. Instrum., 17, 268-275, 1946.
  • Garrison J. B., Lawson A. W, “An absolute noise thermometer for high temperatures and high pressures”, Review of Scientific Instruments, 20, 11, 785 – 794, 1949.
  • Skou N., Microwave radiometer systems: Design and analysis, Artech House, 8-11, 1989.
  • Gilreath L., Jain V., Heydari P., “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver”, IEEE Journal of Solid-state Circuits, 46, 2240-2252, 2011.
  • Lynch J. J., Moyer H. P., Schaffner J. H., Royter Y., Sokolich M., Hughes B., Yoon Y. J., Schulman J. N., “Passive millimeter-wave imaging module with preamplified zero-bias detection”, IEEE Trans. Microw. Theory Tech., 56, 1592-1600, 2008.
  • Sharma P., Hudiara I. S., Singh M. L., “Estimation of effective rain height at 29 GHz at amritsar (tropical region)”, IEEE Transations on Antennas and Propagation, 55, 1463-1465, 2007.
  • Camps A. Tarongi J. M., “Microwave radiometer resolution optimization using variable observation times”, Remote Sensing, 2, 1826-1843, 2010.
  • Camps A., “Noise wave analysis of Dicke and noise injection radiometers: Complete S parameter analysis and effect of temperature gradients”, Radio Science, 45, 2010.
  • Tanner A.B., “Development of a high-stability water vapor radiometer”, Radio Science, 33, 449-462, 1998.
  • Takano T., Maeda T., “Experiment and theoretical study of earthquake detection capability by means of microwave passive sensors on a satellite”, IEEE Geosci. Remote Sens. Letters, 6, 107-111, 2009.
  • Colliander A. et al., “Development and calibration of SMOS reference radiometer”, IEEE Trans. Geosci. Remote Sens., 45, 1967–1977, 2007.
  • Roy M., George D., “Estimation of coupled noise in low noise phased array antennas”, IEEE Trans. on Antennas and Propag., 59, 1846–1854, 2011.
  • Estin A. J., Trembath C. L., Wells J. S., Daywitt W. J., “Absolute measurement of temperatures of microwave noise sources”, IRE Trans. Instrumentation, 9, 209-213, 1960.
  • Wells J. S., Daywitt W. C., Miller C. K. S., “Measurement of effective temperatures of microwave noise sources”, IEEE Trans. on Instrumentation and Measurement, 13, 17-28, 1964.
  • Somlo P. I., Hollyway D. L., “The Australian national standards laboratory X-band radiometer for the calibration of noise sources”, IEEE Transactions on Microwave and Techniques, 16, 664-666, 1968.
  • D.J. Blundell, E.W. Houghton, M.W. Sinclair, “Microwave noise standards in the United Kingdom”, IEEE Trans. on Instrumentation and Measurement, 21, 484-488, 1972.
  • Janik D., “Precision broad-band RF-switched radiometer for the Megahertz and lower gigaherts range with IF attenuator”, IEEE Trans. on Instrumentation and Measurement, 32, 232-234, 1983.
  • Kato Y. Yokoshima I., “A 4-GHz band low-noise measurement system”, IEEE Trans. on Instrumentation and Measurement, 36, 60-66, 1987.
  • Estin A. J., Juroshek J. R., Marks R. B., Clague F. R. Allen J. W., “Basic RF and microwave measurements: a review of selected programs”, Metrologia, 29, 135-151, 1992.
  • Corbella I., Camps F. T. A., Duffo N., Vall-llossera M., Rautiainen K., Colliander M. M. A., “Analysis of correlation and total power radiometer front-ends using noise waves”, IEEE Trans. Geosci. Remote Sens., 43, 2452-2459, 2005.
  • Wiatr W., Schmidt-Szalowski M., “The multistate radiometer: A novel means for impedance and noise temperature measurement”, IEEE Trans. on Instrumentation and Measurement, 46, 486-489, 1997.
  • May J. W., Rebeiz G. M., “Design and characterization of X-band SiGe RFICs for passive millimeter-wave imaging”, IEEE Transactions on Microwave and Techniques, 58, 1420-1430, 2010.
  • Randa J., Billinger R. L., Rice J. L., “On-wafer measurements of noise temperature”, IEEE Trans. on Instrumentation and Measurement, 48, 1259-1269, 1999.
  • Randa J., Gerecht E., Gu D., Billinger R. L., “Precision measurement method for cryogenic amplifier noise temperatures below 5 K”, IEEE Transactions on Microwave and Techniques, 54, 1180-1189, 2006.
  • Wait D. F., Randa J., “Amplifier noise measurements at NIST”, IEEE Trans. on Instrumentation and Measurement, 46, 482-485, 1997.
  • Wait D. F., “Radiometer equation for noise comparison radiometers”, IEEE Trans. on Instrumentation and Measurement, 44, 336-339, 1995.
  • Wiatr W., “Characterization of radiometer using eight-term linear model”, IEEE Trans. on Instrumentation and Measurement, 44, 346-346, 1995.
  • Hersman M. S., Gene G. A., “Sensitivity of the total power radiometer with periodic absolute calibration”, IEEE Trans. on Microwave Theory and Techniques, 29, 32-40, 1981.
  • Land D. V., Lewvick A. P., Hand J. W., “The use of the Allan deviation for the measurement of the noise and drift performance of microwave radiometers”, Measurement Science and Technologies, 18, 1917-1928, 2007.
  • -, Agilent N5531S Measuring Receiver Data Sheet, 5989-9217Y, Agilent Technologies, 2009.
  • White D. R., et al. “The Status of Johnson Noise Termometry”, Metrologia, 33, 325-335, 1996.
  • Pucic S. P., “Derivation of the system equation for null-balanced total-power radiometer system NCS1”, J. Res. Natl. Stand. Technol., 99, 55-63, 1994.
  • Thompson D. A, Rogers R. L., Davis J. H., “Temperature componsation of total power radiometer”, IEEE Trans. on Microwave Theory and Technics, 51, 2003.
  • Racette P., Lang R. H., “Radiometer design analysis based upon measurement uncertainty”, Radio Sci., 40, RS5004 doi:10.1029/2004RS003132, 2005.
  • Celep M., Yaran Ş., Gülmez Y., Dolma A., “Characteerization of a total power radiometer”, Turk. J. Elec. Eng. & Comp. Sci., 20, 870-880, 2012.
  • S. J. Orfanidis, Electromagnetic Waves and Antennas, Rutgers University, 563–568, 2010.
  • BIPM, Evaluation of measurement data – guide to the expression of uncertainty in measurement, JCGM100:2008, 10-15, 2008.

50 MHz – 26,5 GHz Aralığında Çalışan Toplam Güç Radyometrenin Gerçekleştirilmesi ve Test Edilmesi - Realization and Test of The Total Power Radiometer Working Between 50MHz and 26.5 GHz Frequency Range

Year 2013, Volume: 3 Issue: 5, 7 - 15, 14.02.2013

Abstract

Bu çalışmada, yarı iletken bir gürültü kaynağının “excess noise source” (ENR) değerini izlenebilir şekilde ölçmek için bir toplam güç radyometre kurulmuştur. Oldukça geniş olarak kabul edilen 50 MHz – 26,5 GHz frekans aralığında, gürültü kaynağını tek seferde ölçebilen bu sistemin testi, nominal 15 dB ENR değerine sahip standart gürültü kaynakları kullanılarak yapılmıştır. Geliştirilen toplam güç radyometre kullanılarak, değeri bilinen bir gürültü kaynağının hesaplanan ENR değerleri ile gerçek ENR değerleri arasındaki farklar ≤ç0,30ç dB olarak elde edilmiştir. Ölçülen ENR değerlerinin belirsizlikleri ise 0,13 dB ile 0,34 dB aralığında hesaplanmış olup, geçek değer ve ölçülen değer arasındaki farklar belirsizlik değerleri içerisinde bulunmuştur.

In this study, a total power radiometer was established to measure the value of "excess noise source" (ENR) of a semiconductor noise source in a traceable manner. The test of this system which can measure the noise source at a time is performed between the frequency range of 50 MHz to 26.5 GHz, accepted as highly wide, by using standard noise sources with a nominal value of 15 dB ENR. The difference between the actual ENR value and the calculated ENR value of the known noise source was obtained as ≤ç0.30ç by using the developed total power radiometer. Uncertainty of the measured ENR values are calculated in the range of 0.13 dB and 0.34 dB, and the difference between the actual value and the measured value was found in the uncertainty values.

References

  • Einstein A., “Investigations on the theory of the Brownian movement I (On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat)”, Ann.d.Phys., 17, 549-560, 1905. (Edited by R. Fürth, Newyork, Dower Publications Inc. 1956).
  • Johnson J. B., “Thermal agitation of electricity in conductors”, Physical Review, 32, 97-109, 1928.
  • Nyquist H., “Thermal agitation of electric charge in conductors”, Physical Review, 32, 110-113, 1928.
  • Dicke R. H., “The measurement of thermal radiation at microwave frequencies”, Rev. Sci. Instrum., 17, 268-275, 1946.
  • Garrison J. B., Lawson A. W, “An absolute noise thermometer for high temperatures and high pressures”, Review of Scientific Instruments, 20, 11, 785 – 794, 1949.
  • Skou N., Microwave radiometer systems: Design and analysis, Artech House, 8-11, 1989.
  • Gilreath L., Jain V., Heydari P., “Design and analysis of a W-band SiGe direct-detection-based passive imaging receiver”, IEEE Journal of Solid-state Circuits, 46, 2240-2252, 2011.
  • Lynch J. J., Moyer H. P., Schaffner J. H., Royter Y., Sokolich M., Hughes B., Yoon Y. J., Schulman J. N., “Passive millimeter-wave imaging module with preamplified zero-bias detection”, IEEE Trans. Microw. Theory Tech., 56, 1592-1600, 2008.
  • Sharma P., Hudiara I. S., Singh M. L., “Estimation of effective rain height at 29 GHz at amritsar (tropical region)”, IEEE Transations on Antennas and Propagation, 55, 1463-1465, 2007.
  • Camps A. Tarongi J. M., “Microwave radiometer resolution optimization using variable observation times”, Remote Sensing, 2, 1826-1843, 2010.
  • Camps A., “Noise wave analysis of Dicke and noise injection radiometers: Complete S parameter analysis and effect of temperature gradients”, Radio Science, 45, 2010.
  • Tanner A.B., “Development of a high-stability water vapor radiometer”, Radio Science, 33, 449-462, 1998.
  • Takano T., Maeda T., “Experiment and theoretical study of earthquake detection capability by means of microwave passive sensors on a satellite”, IEEE Geosci. Remote Sens. Letters, 6, 107-111, 2009.
  • Colliander A. et al., “Development and calibration of SMOS reference radiometer”, IEEE Trans. Geosci. Remote Sens., 45, 1967–1977, 2007.
  • Roy M., George D., “Estimation of coupled noise in low noise phased array antennas”, IEEE Trans. on Antennas and Propag., 59, 1846–1854, 2011.
  • Estin A. J., Trembath C. L., Wells J. S., Daywitt W. J., “Absolute measurement of temperatures of microwave noise sources”, IRE Trans. Instrumentation, 9, 209-213, 1960.
  • Wells J. S., Daywitt W. C., Miller C. K. S., “Measurement of effective temperatures of microwave noise sources”, IEEE Trans. on Instrumentation and Measurement, 13, 17-28, 1964.
  • Somlo P. I., Hollyway D. L., “The Australian national standards laboratory X-band radiometer for the calibration of noise sources”, IEEE Transactions on Microwave and Techniques, 16, 664-666, 1968.
  • D.J. Blundell, E.W. Houghton, M.W. Sinclair, “Microwave noise standards in the United Kingdom”, IEEE Trans. on Instrumentation and Measurement, 21, 484-488, 1972.
  • Janik D., “Precision broad-band RF-switched radiometer for the Megahertz and lower gigaherts range with IF attenuator”, IEEE Trans. on Instrumentation and Measurement, 32, 232-234, 1983.
  • Kato Y. Yokoshima I., “A 4-GHz band low-noise measurement system”, IEEE Trans. on Instrumentation and Measurement, 36, 60-66, 1987.
  • Estin A. J., Juroshek J. R., Marks R. B., Clague F. R. Allen J. W., “Basic RF and microwave measurements: a review of selected programs”, Metrologia, 29, 135-151, 1992.
  • Corbella I., Camps F. T. A., Duffo N., Vall-llossera M., Rautiainen K., Colliander M. M. A., “Analysis of correlation and total power radiometer front-ends using noise waves”, IEEE Trans. Geosci. Remote Sens., 43, 2452-2459, 2005.
  • Wiatr W., Schmidt-Szalowski M., “The multistate radiometer: A novel means for impedance and noise temperature measurement”, IEEE Trans. on Instrumentation and Measurement, 46, 486-489, 1997.
  • May J. W., Rebeiz G. M., “Design and characterization of X-band SiGe RFICs for passive millimeter-wave imaging”, IEEE Transactions on Microwave and Techniques, 58, 1420-1430, 2010.
  • Randa J., Billinger R. L., Rice J. L., “On-wafer measurements of noise temperature”, IEEE Trans. on Instrumentation and Measurement, 48, 1259-1269, 1999.
  • Randa J., Gerecht E., Gu D., Billinger R. L., “Precision measurement method for cryogenic amplifier noise temperatures below 5 K”, IEEE Transactions on Microwave and Techniques, 54, 1180-1189, 2006.
  • Wait D. F., Randa J., “Amplifier noise measurements at NIST”, IEEE Trans. on Instrumentation and Measurement, 46, 482-485, 1997.
  • Wait D. F., “Radiometer equation for noise comparison radiometers”, IEEE Trans. on Instrumentation and Measurement, 44, 336-339, 1995.
  • Wiatr W., “Characterization of radiometer using eight-term linear model”, IEEE Trans. on Instrumentation and Measurement, 44, 346-346, 1995.
  • Hersman M. S., Gene G. A., “Sensitivity of the total power radiometer with periodic absolute calibration”, IEEE Trans. on Microwave Theory and Techniques, 29, 32-40, 1981.
  • Land D. V., Lewvick A. P., Hand J. W., “The use of the Allan deviation for the measurement of the noise and drift performance of microwave radiometers”, Measurement Science and Technologies, 18, 1917-1928, 2007.
  • -, Agilent N5531S Measuring Receiver Data Sheet, 5989-9217Y, Agilent Technologies, 2009.
  • White D. R., et al. “The Status of Johnson Noise Termometry”, Metrologia, 33, 325-335, 1996.
  • Pucic S. P., “Derivation of the system equation for null-balanced total-power radiometer system NCS1”, J. Res. Natl. Stand. Technol., 99, 55-63, 1994.
  • Thompson D. A, Rogers R. L., Davis J. H., “Temperature componsation of total power radiometer”, IEEE Trans. on Microwave Theory and Technics, 51, 2003.
  • Racette P., Lang R. H., “Radiometer design analysis based upon measurement uncertainty”, Radio Sci., 40, RS5004 doi:10.1029/2004RS003132, 2005.
  • Celep M., Yaran Ş., Gülmez Y., Dolma A., “Characteerization of a total power radiometer”, Turk. J. Elec. Eng. & Comp. Sci., 20, 870-880, 2012.
  • S. J. Orfanidis, Electromagnetic Waves and Antennas, Rutgers University, 563–568, 2010.
  • BIPM, Evaluation of measurement data – guide to the expression of uncertainty in measurement, JCGM100:2008, 10-15, 2008.
There are 40 citations in total.

Details

Primary Language Turkish
Journal Section Akademik ve/veya teknolojik bilimsel makale
Authors

Murat Celep

Şenel Yaran This is me

Cem Hayırlı This is me

Arif Dolma

Publication Date February 14, 2013
Submission Date February 14, 2013
Published in Issue Year 2013 Volume: 3 Issue: 5

Cite

APA Celep, M., Yaran, Ş., Hayırlı, C., Dolma, A. (2013). 50 MHz – 26,5 GHz Aralığında Çalışan Toplam Güç Radyometrenin Gerçekleştirilmesi ve Test Edilmesi - Realization and Test of The Total Power Radiometer Working Between 50MHz and 26.5 GHz Frequency Range. EMO Bilimsel Dergi, 3(5), 7-15.
AMA Celep M, Yaran Ş, Hayırlı C, Dolma A. 50 MHz – 26,5 GHz Aralığında Çalışan Toplam Güç Radyometrenin Gerçekleştirilmesi ve Test Edilmesi - Realization and Test of The Total Power Radiometer Working Between 50MHz and 26.5 GHz Frequency Range. EMO Bilimsel Dergi. July 2013;3(5):7-15.
Chicago Celep, Murat, Şenel Yaran, Cem Hayırlı, and Arif Dolma. “50 MHz – 26,5 GHz Aralığında Çalışan Toplam Güç Radyometrenin Gerçekleştirilmesi Ve Test Edilmesi - Realization and Test of The Total Power Radiometer Working Between 50MHz and 26.5 GHz Frequency Range”. EMO Bilimsel Dergi 3, no. 5 (July 2013): 7-15.
EndNote Celep M, Yaran Ş, Hayırlı C, Dolma A (July 1, 2013) 50 MHz – 26,5 GHz Aralığında Çalışan Toplam Güç Radyometrenin Gerçekleştirilmesi ve Test Edilmesi - Realization and Test of The Total Power Radiometer Working Between 50MHz and 26.5 GHz Frequency Range. EMO Bilimsel Dergi 3 5 7–15.
IEEE M. Celep, Ş. Yaran, C. Hayırlı, and A. Dolma, “50 MHz – 26,5 GHz Aralığında Çalışan Toplam Güç Radyometrenin Gerçekleştirilmesi ve Test Edilmesi - Realization and Test of The Total Power Radiometer Working Between 50MHz and 26.5 GHz Frequency Range”, EMO Bilimsel Dergi, vol. 3, no. 5, pp. 7–15, 2013.
ISNAD Celep, Murat et al. “50 MHz – 26,5 GHz Aralığında Çalışan Toplam Güç Radyometrenin Gerçekleştirilmesi Ve Test Edilmesi - Realization and Test of The Total Power Radiometer Working Between 50MHz and 26.5 GHz Frequency Range”. EMO Bilimsel Dergi 3/5 (July 2013), 7-15.
JAMA Celep M, Yaran Ş, Hayırlı C, Dolma A. 50 MHz – 26,5 GHz Aralığında Çalışan Toplam Güç Radyometrenin Gerçekleştirilmesi ve Test Edilmesi - Realization and Test of The Total Power Radiometer Working Between 50MHz and 26.5 GHz Frequency Range. EMO Bilimsel Dergi. 2013;3:7–15.
MLA Celep, Murat et al. “50 MHz – 26,5 GHz Aralığında Çalışan Toplam Güç Radyometrenin Gerçekleştirilmesi Ve Test Edilmesi - Realization and Test of The Total Power Radiometer Working Between 50MHz and 26.5 GHz Frequency Range”. EMO Bilimsel Dergi, vol. 3, no. 5, 2013, pp. 7-15.
Vancouver Celep M, Yaran Ş, Hayırlı C, Dolma A. 50 MHz – 26,5 GHz Aralığında Çalışan Toplam Güç Radyometrenin Gerçekleştirilmesi ve Test Edilmesi - Realization and Test of The Total Power Radiometer Working Between 50MHz and 26.5 GHz Frequency Range. EMO Bilimsel Dergi. 2013;3(5):7-15.

EMO BİLİMSEL DERGİ
Elektrik, Elektronik, Bilgisayar, Biyomedikal, Kontrol Mühendisliği Bilimsel Hakemli Dergisi
TMMOB ELEKTRİK MÜHENDİSLERİ ODASI 
IHLAMUR SOKAK NO:10 KIZILAY/ANKARA
TEL: +90 (312) 425 32 72 (PBX) - FAKS: +90 (312) 417 38 18
bilimseldergi@emo.org.tr