Research Article
BibTex RIS Cite

The Examination of Prospective Chemistry and Physics Teachers’ Cognitive Structure Related to Quantum Numbers

Year 2020, Volume: 8 Issue: 2, 649 - 664, 30.04.2020

Abstract

This study firstly aimed to analyse prospective chemistry and physics teachers’ comprehension levels to quantum numbers. Secondly, the study analysed the changes in both groups of prospective teachers’ levels of comprehending quantum numbers. In this context, qualitative research method was used and purposeful sampling method was employed in the selection of the participants in this study. 8 prospective chemistry and 9 prospective physics teachers were included in the study. The prospective teachers’ responses to the seven open-ended questions were analysed separately by the two researchers according the classification made by Abraham, Grybowsky, Renner and Marek (1992). First, prospective chemistry and physics teachers’ level of understanding quantum numbers was determined. Then, variability in their levels of understanding was examined. In addition to that, prospective teachers’ probable misconceptions/alternative concepts/wrong concepts and deficient knowledge was also determined. It was concluded that prospective teachers in general had wrong concepts in addition to partial understanding the subject. It was also found that there were considerable changes in their comprehension levels. In this context, the nature of prospective teachers’ understanding of quantum numbers was discussed in details.

References

  • Abraham, M. R., Gryzybowski, E. B., Renner, J. W., & Marek, A.E. (1992). Understanding and misunderstanding of eighth graders of five chemistry concepts found in textbooks, Journal of Research in Science Teaching, 29, 105-120.
  • Anderson, O. R. (1992). Some interrelationships between constructivist models of learning and current neurobiological theory, with implications for science education, Journal of Research in Science Teaching, 29, 1037- 1058.
  • Ardac, D. (2002). Solving quantum number problems: an examination of novice performance in terms of conceptual base requirements, Journal of Chemical Education, 79(4), 510-513.
  • Ausubel, D. P. (1968). Educational Psychology: A Cognitive View New York: Holt, Rinehart and Winston.
  • Bayram, H., Sökmen, N., & Savcı, H. (1997). Temel fen kavramlarının anlaşılma düzeyinin saptanması [Determining the understanding level of basics science concepts], Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 9, 89-100.
  • Bodner, G. M. (1986). Constructivism: A theory of knowledge, Journal of Chemical Education, 63, 873-878.
  • Bretz, S. L. (2001). Novak’s theory of education: human constructivism and meaningful learning, Journal of Chemical Education, 78(8), 1107.
  • Charles, T. P. & Peterson, D. L. (1989). Another quantum number?, Journal of Chemical Education, 66(8), 623-624.
  • Choda, J. & Chenprakhon, P. (2015). A hands-on physical model for teaching quantum numbers and rules for writing electron configuration 3rd Global Summit on Education GSE 2015.
  • Coppo, P. (2016). Visualizing, Rather than Deriving, Russell−Saunders Terms: A Classroom Activity with Quantum Numbers, Journal of Chemical Education, 93, 1085−1090.
  • Dobson, K., Lawrence, I. & Britton, P. (2000). The A to B of quantum physics, Physics Education, 35, 400–405.
  • Fraenkel, J. R. & Wallen, N. E. (2000). How to design & evaluate research in education, Boston MA: McGraw Hill.
  • Garik P., Kelley P., Crosby, A., Dill D., Golger, A., & Hoffman, M. Z. (2005). Modernizing General Chemistry for the Year 2050: Why Are General Chemistry Instructors Hesitant to Teach Quantum Concepts? NARST 2005.
  • Gillespie, R. J., Spencer, J. N., & Moog, R. S. (1996). Electron Configurations from Experiment, Journal of Chemical Education, 73(7), 617-622.
  • Garofalo, A. (1997). Housing Electrons: Relating Quantum Numbers, Energy Levels, and Electron Configurations, Journal of Chemical Education, 74, 709-710.
  • Hadzidaki, P., Kalkanis, G. & Stavrou, D. (2000). Quantum mechanics: A systemic component of the modern physics paradigm, Physics Education, 35, 386–392.
  • Howard, R. (1988). Schemata: Implications for teaching science, Australian Science Teacher Journal, 34, 29-34.
  • Ifenthaler, D., Masduki, I. & Seel, N. M. (2009). The mystery of cognitive structure and how we can detect it: tracking the development of cognitive structures over time, Instructional Science, 4, 162-179.
  • Ireson, G. (2000). The quantum understanding of pre-university physics students, Physics Education, 35, 15–21.
  • Jonassen, D. H. (1987). Assessing cognitive structure: Verifying a method using pattern notes, Journal of Research & Development in Education, 20(3), 1-14.
  • Kahraman, B. (2013). Genel kimya ders kitaplarında “kuantum sayıları” konusunun sunumu: bilim tarihi ve felsefesi açısından bir inceleme [Presentation of "Quantum Numbers" Topic in General Chemistry Textbooks: An Analysis of History and Philosophy of Science Perspective] Unpublished Mater Thesis, Eğitim Bilimleri Enstitüsü, Dokuz Eylül Üniversitesi, İzmir.
  • Kalkanis, G., Hadzidaki, P. & Stavrou, D. (2003). An instructional model for a radical conceptual change towards quantum mechanics concepts, Science Education, 87, 257–280.
  • Merriam, S. (2009). Qualitative research: A guide to design and implementation. San Francisco, CA: Jossey-Bass.
  • Michelini, M., Ragazzon, R., Santi L. & Stefanel, A. (2000). Proposal for quantum physics in secondary school, Physics Education, 35, 406–410.
  • Niaz, M. & Fernández, R. (2008). Understanding Quantum Numbers in General Chemistry Textbooks, International Journal of Science Education, 30(7), 869-901.
  • Novak, J. D., & Gowin, B. D. (1984). Learning How to Learn New York: Cambridge University Press.
  • Özcan, Ö. (2013). Investigation of mental models of Turkish pre-service physics students for the concept of “spin”. Egitim Arastirmalari-Eurasian Journal of Educational Research, 52, 21-36.
  • Özcan, Ö., Didiş, N., & Taşar, M.F. (2009). Students’ conceptual difficulties in quantum mechanics: Potential wel problems, Hacettepe Üniversitesi Eğitim Fakültesi Dergisi (H. U. Journal of Education), 36, 166-180.
  • Papaphotis, G. & Tsaparlis, G. (2008). Conceptual versus algorithmic learning in high school chemistry: the case of basic quantum chemical concepts Part 2. Students’ common errors, misconceptions and difficulties in understanding, Chemistry Education Research and Practice, 9, 332-340.
  • Patton, M. Q. (2002). Qualitative Research & Evaluation Methods (3rd ed.) Thousand Oaks CA: Sage.
  • Pearson, W. H. (2014). A general chemistry laboratory experiment relating electron configuration and magnetic behavior, Journal of Chemical Education, 91(1), 116–118.
  • Shavelson, R. J. (1974). Methods for examining representations of a subject matter structure in a student's memory, Journal of Research in Science Teaching, 11, 231-249.
  • Singh, C. (2001). Student understanding of quantum mechanics American Journal of Physics, 69, 885–895.
  • Snow, R. E. (1989). Toward assessment of cognitive and conative structures in learning, Educational Researcher, 18(9), 8-14.
  • Sunyonu, S., Tania L. & Saputra, A. (2016). A learning exercise using simple and real-time visualization tool to counter misconceptions about orbitals and quantum numbers Journal of Baltic Science Education, 15(4), 452-463.
  • Taber, K. S. (2002). Conceptualizing quanta: Illuminating the ground state of student understanding of atomic orbitals, Chemistry Education Research and Practice, 3(2), 145–158.
  • Taber, K. S. (2005). Learning quanta: Barriers to stimulating transitions in student understanding of orbital ideas, Science Education, 89, 94–116.
  • Taber K. S., & Coll R. K. (2003). Bonding, in Gilbert J.K., De Jong O., Justi R., Treagust D. F. and Van Driel J.H. (ed.), Chemical education: towards research-based practice, Dordrecht: Kluwer, pp. 213-234).
  • Temel, S., & Özcan, Ö. (2016). The Analysis of Prospective Chemistry Teachers’ Cognitive Structure: The Subject of Covalent and Ionic Bonding, Eurasia Journal of Mathematics, Science and Technology Education, 12(8), 1953-1969.
  • Tsai, C. C. (2001). Probing students’ cognitive structures in science: The use of a flow map method coupled with a meta-listening technique, Studies in Educational Evaluation, 27, 257-268.
  • Tsai, C. C., & Huang, C. M. (2002). Exploring students' cognitive structures in learning science: a review of relevant methods, Journal of Biological Education, 36, 163-169.
  • Tsaparlis, G. (1997). Atomic orbitals, molecular orbitals and related concepts: Conceptual difficulties among chemistry students, Research in Science Education, 27, 271– 287.
  • Tsaparlis, G. (2001). Towards a meaningful introduction to the Schrödinger equation through historical and heuristic approaches, Chemistry Education Research and Practice, 2, 203–213.
  • Wittmann, M.C, Steinberg, R. N. & Redish, E. F. (2002). Investigating student understanding of quantum physics: Spontaneous models of conductivity, American Journal of Physics, 70, 218–226.
  • Yıldırım, A., & Şimşek, H. (2011). Sosyal Bilimlerde Nitel Araştırma Yöntemleri [qualitative Research Methods in Social Sciences], Ankara: Seçkin Yayıncılık.
  • Zollman, D., Rebello, S. & Hogg, K. (2002). Quantum physics for everyone: Hands-on activities integrated with technology, American Journal of Physics, 70, 252–259.

Kimya ve Fizik Öğretmen Adaylarının Kuantum Sayılarına Yönelik Bilişsel Yapılarının İncelenmesi

Year 2020, Volume: 8 Issue: 2, 649 - 664, 30.04.2020

Abstract

Bu çalışmada ilk olarak kimya ve fizik öğretmen adaylarının kuantum sayılarına yönelik bilişsel yapılarının ortaya konulması amaçlanmaktadır. İkinci olarak, her iki grup öğretmen adaylarının kuantum sayılarına yönelik anlama düzeylerindeki değişim incelenmiştir. Bu bağlamda çalışma nitel araştırma yöntemlerine göre yürütülmüştür ve katılımcılar amaçlı örnekleme yöntemine göre belirlemiştir. 8 kimya ve 9 fizik öğretmen adayının katılımıyla çalışma yürütülmüştür. Öğretmen adaylarının bilişsel yapılarını belirlemek için 7 açık uçlu sorudan oluşan veri toplama aracı kullanılmıştır. Öğretmen adaylarının bu sorulara verdikleri yazılı cevaplar analiz edilerek onların kavram yanılgıları/alternatif kavramları/yanlış kavramları, eksik bilgileri belirlenmiştir. Öğretmen adaylarının açık uçlu sorulara vermiş oldukları yazılı cevaplar her iki araştırmacı tarafından ayrı ayrı Abraham, Gryzybowski, Renner, and Marek in (1992)’ sınıflandırmasına göre analiz edilmiştir. İlk olarak kimya ve fizik öğretmen adaylarının kuantum sayıları ile ilgili hangi anlama düzeyinde oldukları tespit edilmiştir. İkinci olarak öğretmen adaylarının anlama düzeylerindeki değişkenlik incelenmiştir. Öğretmen adaylarının genel olarak konu ile ilgili kısmen anlama ile birlikte yanlış kavramlara sahip oldukları belirlenmiştir. Ayrıca öğretmen adaylarının anlama düzeylerinde dalgalanmaların oldukça fazla olduğu tespit edilmiştir. Bu bağlamda, öğretmen adaylarında kuantum sayıları ile ilgili ortaya çıkan bilgi yapılarının doğası detaylı olarak tartışılmıştır.

References

  • Abraham, M. R., Gryzybowski, E. B., Renner, J. W., & Marek, A.E. (1992). Understanding and misunderstanding of eighth graders of five chemistry concepts found in textbooks, Journal of Research in Science Teaching, 29, 105-120.
  • Anderson, O. R. (1992). Some interrelationships between constructivist models of learning and current neurobiological theory, with implications for science education, Journal of Research in Science Teaching, 29, 1037- 1058.
  • Ardac, D. (2002). Solving quantum number problems: an examination of novice performance in terms of conceptual base requirements, Journal of Chemical Education, 79(4), 510-513.
  • Ausubel, D. P. (1968). Educational Psychology: A Cognitive View New York: Holt, Rinehart and Winston.
  • Bayram, H., Sökmen, N., & Savcı, H. (1997). Temel fen kavramlarının anlaşılma düzeyinin saptanması [Determining the understanding level of basics science concepts], Atatürk Eğitim Fakültesi Eğitim Bilimleri Dergisi, 9, 89-100.
  • Bodner, G. M. (1986). Constructivism: A theory of knowledge, Journal of Chemical Education, 63, 873-878.
  • Bretz, S. L. (2001). Novak’s theory of education: human constructivism and meaningful learning, Journal of Chemical Education, 78(8), 1107.
  • Charles, T. P. & Peterson, D. L. (1989). Another quantum number?, Journal of Chemical Education, 66(8), 623-624.
  • Choda, J. & Chenprakhon, P. (2015). A hands-on physical model for teaching quantum numbers and rules for writing electron configuration 3rd Global Summit on Education GSE 2015.
  • Coppo, P. (2016). Visualizing, Rather than Deriving, Russell−Saunders Terms: A Classroom Activity with Quantum Numbers, Journal of Chemical Education, 93, 1085−1090.
  • Dobson, K., Lawrence, I. & Britton, P. (2000). The A to B of quantum physics, Physics Education, 35, 400–405.
  • Fraenkel, J. R. & Wallen, N. E. (2000). How to design & evaluate research in education, Boston MA: McGraw Hill.
  • Garik P., Kelley P., Crosby, A., Dill D., Golger, A., & Hoffman, M. Z. (2005). Modernizing General Chemistry for the Year 2050: Why Are General Chemistry Instructors Hesitant to Teach Quantum Concepts? NARST 2005.
  • Gillespie, R. J., Spencer, J. N., & Moog, R. S. (1996). Electron Configurations from Experiment, Journal of Chemical Education, 73(7), 617-622.
  • Garofalo, A. (1997). Housing Electrons: Relating Quantum Numbers, Energy Levels, and Electron Configurations, Journal of Chemical Education, 74, 709-710.
  • Hadzidaki, P., Kalkanis, G. & Stavrou, D. (2000). Quantum mechanics: A systemic component of the modern physics paradigm, Physics Education, 35, 386–392.
  • Howard, R. (1988). Schemata: Implications for teaching science, Australian Science Teacher Journal, 34, 29-34.
  • Ifenthaler, D., Masduki, I. & Seel, N. M. (2009). The mystery of cognitive structure and how we can detect it: tracking the development of cognitive structures over time, Instructional Science, 4, 162-179.
  • Ireson, G. (2000). The quantum understanding of pre-university physics students, Physics Education, 35, 15–21.
  • Jonassen, D. H. (1987). Assessing cognitive structure: Verifying a method using pattern notes, Journal of Research & Development in Education, 20(3), 1-14.
  • Kahraman, B. (2013). Genel kimya ders kitaplarında “kuantum sayıları” konusunun sunumu: bilim tarihi ve felsefesi açısından bir inceleme [Presentation of "Quantum Numbers" Topic in General Chemistry Textbooks: An Analysis of History and Philosophy of Science Perspective] Unpublished Mater Thesis, Eğitim Bilimleri Enstitüsü, Dokuz Eylül Üniversitesi, İzmir.
  • Kalkanis, G., Hadzidaki, P. & Stavrou, D. (2003). An instructional model for a radical conceptual change towards quantum mechanics concepts, Science Education, 87, 257–280.
  • Merriam, S. (2009). Qualitative research: A guide to design and implementation. San Francisco, CA: Jossey-Bass.
  • Michelini, M., Ragazzon, R., Santi L. & Stefanel, A. (2000). Proposal for quantum physics in secondary school, Physics Education, 35, 406–410.
  • Niaz, M. & Fernández, R. (2008). Understanding Quantum Numbers in General Chemistry Textbooks, International Journal of Science Education, 30(7), 869-901.
  • Novak, J. D., & Gowin, B. D. (1984). Learning How to Learn New York: Cambridge University Press.
  • Özcan, Ö. (2013). Investigation of mental models of Turkish pre-service physics students for the concept of “spin”. Egitim Arastirmalari-Eurasian Journal of Educational Research, 52, 21-36.
  • Özcan, Ö., Didiş, N., & Taşar, M.F. (2009). Students’ conceptual difficulties in quantum mechanics: Potential wel problems, Hacettepe Üniversitesi Eğitim Fakültesi Dergisi (H. U. Journal of Education), 36, 166-180.
  • Papaphotis, G. & Tsaparlis, G. (2008). Conceptual versus algorithmic learning in high school chemistry: the case of basic quantum chemical concepts Part 2. Students’ common errors, misconceptions and difficulties in understanding, Chemistry Education Research and Practice, 9, 332-340.
  • Patton, M. Q. (2002). Qualitative Research & Evaluation Methods (3rd ed.) Thousand Oaks CA: Sage.
  • Pearson, W. H. (2014). A general chemistry laboratory experiment relating electron configuration and magnetic behavior, Journal of Chemical Education, 91(1), 116–118.
  • Shavelson, R. J. (1974). Methods for examining representations of a subject matter structure in a student's memory, Journal of Research in Science Teaching, 11, 231-249.
  • Singh, C. (2001). Student understanding of quantum mechanics American Journal of Physics, 69, 885–895.
  • Snow, R. E. (1989). Toward assessment of cognitive and conative structures in learning, Educational Researcher, 18(9), 8-14.
  • Sunyonu, S., Tania L. & Saputra, A. (2016). A learning exercise using simple and real-time visualization tool to counter misconceptions about orbitals and quantum numbers Journal of Baltic Science Education, 15(4), 452-463.
  • Taber, K. S. (2002). Conceptualizing quanta: Illuminating the ground state of student understanding of atomic orbitals, Chemistry Education Research and Practice, 3(2), 145–158.
  • Taber, K. S. (2005). Learning quanta: Barriers to stimulating transitions in student understanding of orbital ideas, Science Education, 89, 94–116.
  • Taber K. S., & Coll R. K. (2003). Bonding, in Gilbert J.K., De Jong O., Justi R., Treagust D. F. and Van Driel J.H. (ed.), Chemical education: towards research-based practice, Dordrecht: Kluwer, pp. 213-234).
  • Temel, S., & Özcan, Ö. (2016). The Analysis of Prospective Chemistry Teachers’ Cognitive Structure: The Subject of Covalent and Ionic Bonding, Eurasia Journal of Mathematics, Science and Technology Education, 12(8), 1953-1969.
  • Tsai, C. C. (2001). Probing students’ cognitive structures in science: The use of a flow map method coupled with a meta-listening technique, Studies in Educational Evaluation, 27, 257-268.
  • Tsai, C. C., & Huang, C. M. (2002). Exploring students' cognitive structures in learning science: a review of relevant methods, Journal of Biological Education, 36, 163-169.
  • Tsaparlis, G. (1997). Atomic orbitals, molecular orbitals and related concepts: Conceptual difficulties among chemistry students, Research in Science Education, 27, 271– 287.
  • Tsaparlis, G. (2001). Towards a meaningful introduction to the Schrödinger equation through historical and heuristic approaches, Chemistry Education Research and Practice, 2, 203–213.
  • Wittmann, M.C, Steinberg, R. N. & Redish, E. F. (2002). Investigating student understanding of quantum physics: Spontaneous models of conductivity, American Journal of Physics, 70, 218–226.
  • Yıldırım, A., & Şimşek, H. (2011). Sosyal Bilimlerde Nitel Araştırma Yöntemleri [qualitative Research Methods in Social Sciences], Ankara: Seçkin Yayıncılık.
  • Zollman, D., Rebello, S. & Hogg, K. (2002). Quantum physics for everyone: Hands-on activities integrated with technology, American Journal of Physics, 70, 252–259.
There are 46 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Senar Temel This is me

Özgür Özcan This is me

Publication Date April 30, 2020
Published in Issue Year 2020 Volume: 8 Issue: 2

Cite

APA Temel, S., & Özcan, Ö. (2020). The Examination of Prospective Chemistry and Physics Teachers’ Cognitive Structure Related to Quantum Numbers. Eğitimde Nitel Araştırmalar Dergisi, 8(2), 649-664.
AMA Temel S, Özcan Ö. The Examination of Prospective Chemistry and Physics Teachers’ Cognitive Structure Related to Quantum Numbers. Derginin Amacı ve Kapsamı. April 2020;8(2):649-664.
Chicago Temel, Senar, and Özgür Özcan. “The Examination of Prospective Chemistry and Physics Teachers’ Cognitive Structure Related to Quantum Numbers”. Eğitimde Nitel Araştırmalar Dergisi 8, no. 2 (April 2020): 649-64.
EndNote Temel S, Özcan Ö (April 1, 2020) The Examination of Prospective Chemistry and Physics Teachers’ Cognitive Structure Related to Quantum Numbers. Eğitimde Nitel Araştırmalar Dergisi 8 2 649–664.
IEEE S. Temel and Ö. Özcan, “The Examination of Prospective Chemistry and Physics Teachers’ Cognitive Structure Related to Quantum Numbers”, Derginin Amacı ve Kapsamı, vol. 8, no. 2, pp. 649–664, 2020.
ISNAD Temel, Senar - Özcan, Özgür. “The Examination of Prospective Chemistry and Physics Teachers’ Cognitive Structure Related to Quantum Numbers”. Eğitimde Nitel Araştırmalar Dergisi 8/2 (April 2020), 649-664.
JAMA Temel S, Özcan Ö. The Examination of Prospective Chemistry and Physics Teachers’ Cognitive Structure Related to Quantum Numbers. Derginin Amacı ve Kapsamı. 2020;8:649–664.
MLA Temel, Senar and Özgür Özcan. “The Examination of Prospective Chemistry and Physics Teachers’ Cognitive Structure Related to Quantum Numbers”. Eğitimde Nitel Araştırmalar Dergisi, vol. 8, no. 2, 2020, pp. 649-64.
Vancouver Temel S, Özcan Ö. The Examination of Prospective Chemistry and Physics Teachers’ Cognitive Structure Related to Quantum Numbers. Derginin Amacı ve Kapsamı. 2020;8(2):649-64.