Research Article
BibTex RIS Cite

Integrated Emission and Cost Analysis of Battery-Electric Vehicles up to 2035

Year 2025, Volume: 5 Issue: 3, 111 - 122, 30.09.2025
https://doi.org/10.64808/engineeringperspective.1753723

Abstract

This study quantifies when battery-electric vehicles (BEVs) reach total cost of ownership (TCO) parity with their internal-combustion counterparts and characterises the cradle-to-grave greenhouse-gas (GHG) intensity trajectory to 2035. Our contribution is a transparent, Python-based framework that integrates battery-cost learning, ownership eco-nomics and life-cycle impacts within a harmonised scenario set, and links them to policy timing, ISO 15118-20-ready bidirectional charging and power-system carbon intensity. Drawing on a systematic synthesis of 221 peer-reviewed sources (2013–2025), the model runs annually for a representative C-segment BEV across three scenarios (Reference, Fast-Progress, Slow-Progress; 2024–2035). The results indicate that, under the median battery-pack price learning tra-jectory, BEV TCO falls below the ICE benchmark around 2029 (2028–2032 across scenarios), while life-cycle GHG intensity declines from approximately 73 to 34 g CO2-eq km-1 by 2035, spanning 29–42 g km-1 depending on grid de-carbonisation. Global sensitivity analysis identifies battery price as the principal driver of TCO outcomes and grid carbon intensity as the principal driver of emissions outcomes. Results are reported for three regional aggregates (OECD average, EU-27 and China), and the policy discussion highlights contrasts for the United States to contextual-ise cross-market differences. Policy alignment on three fronts—parity-linked purchase-incentive phase-outs, rapid deployment of ISO 15118-20-ready bidirectional charging, and stronger recycled-content targets—shortens time to cost competitiveness and amplifies the climate benefits of large-scale electrification.

References

  • 1. International Energy Agency, Global EV Outlook 2025: Trends in Electric Car Markets. Paris, France: IEA, 2025.
  • 2. International Energy Agency, Global EV Outlook 2025: Execu-tive Summary. Paris, France: IEA, 2025.
  • 3. Diouf, B. (2025). The Second-Hand Market in the Electric Vehicle Transition. World Electric Vehicle Journal, 16(7), 397. https://doi.org/10.3390/wevj16070397
  • 4. Hou, T., Wang, D., Jiang, B., Liu, Y., Kong, J., He, Y., ... & Xu, H. (2025). Ion bridging enables high-voltage polyether electro-lytes for quasi-solid-state batteries. Nature Communications, 16(1), 962. https://doi.org/10.1038/s41467-025-56324-9
  • 5. International Organization for Standardization, ISO 15118-20:2022—Road Vehicles—Vehicle-to-Grid Communication In-terface—Part 20: 2nd-Generation Network Layer and Applica-tion Layer Requirements. Geneva, Switzerland: ISO, 2022.
  • 6. M. J. Page et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” BMJ, vol. 372, p. n71, Mar. 2021, doi: https://doi.org/10.1136/bmj.n71.
  • 7. B. Kitchenham and S. Charters, Guidelines for Performing Sys-tematic Literature Reviews in Software Engineering, EBSE Tech. Rep. EBSE-2007-01, Keele Univ. & Univ. Durham, 2007.
  • 8. N. J. van Eck and L. Waltman, VOSviewer Manual, Version 1.6.20. Leiden, The Netherlands: Leiden Univ., Oct. 2023.
  • 9. M. Aria and C. Cuccurullo, “bibliometrix: An R-tool for com-prehensive science-mapping analysis,” Journal of Informetrics, vol. 11, no. 4, pp. 959–975, 2017, doi: https://doi.org/10.1016/j.joi.2017.08.007.
  • 10. International Energy Agency, Global EV Outlook 2025: Data Annex. Paris, France: IEA, 2025.
  • 11. BloombergNEF, Battery Pack Prices 2024 Survey (dataset summary), London, U.K., Dec. 2024.
  • 12. International Energy Agency, World Energy Outlook 2024: Stated Policies Scenario Data. Paris, France: IEA, 2024.
  • 13. Argonne National Laboratory, Summary of Expansions and Updates in R&D GREET 2023 (ANL/ESD-23/49). Lemont, IL, USA: ANL, Oct. 2023.
  • 14. International Energy Agency, Global EV Outlook 2025: Battery Demand Trends. Paris, France: IEA, 2025.
  • 15. Regulation (EU) 2023/1804 of 13 Sept. 2023 on the Deploy-ment of Alternative Fuels Infrastructure, Official Journal of the European Union, L 234, pp. 1–98, Sept. 2023.
  • 16. Knobloch, F., Hanssen, S. V., Lam, A., Pollitt, H., Salas, P., Chewpreecha, U., Huijbregts, M. A. J., & Mercure, J.-F. (2020). Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nature Sustainability, 3(6), 437-447. https://doi.org/10.1038/s41893-020-0488-7
  • 17. European Automobile Manufacturers’ Association (ACEA), Electric Cars: Tax Benefits and Purchase Incentives 2025 (Fact Sheet). Brussels, Belgium, Mar. 2025.
  • 18. Internal Revenue Service, Instructions for Form 8936 (New Clean Vehicle Credit). Washington, DC, USA, Jan. 2025.
  • 19. Ministry of Finance of the People’s Republic of China, State Taxation Administration, and MIIT, “Notice on Extending Pur-chase-Tax Exemption for New-Energy Vehicles,” Jun. 21, 2023.
  • 20. International Energy Agency, “Electric vehicle charging,” Glob-al EV Outlook 2025. Paris, France: IEA, 2025.
  • 21. Regulation (EU) 2023/1542 of 12 Jul. 2023 concerning batteries and waste batteries, Official Journal of the European Union, L 191, pp. 1–117, Jul. 2023.
  • 22. U.S. Department of Energy, “Battery Manufacturing and Recy-cling Grants Program – Overview,” Office of Manufacturing & Energy Supply Chains, Oct. 19, 2023.
  • 23. Sederholm, J. G., Li, L., Liu, Z., Lan, K.-W., Cho, E. J., Guru-mukhi, Y., Dipto, M. J., Ahmari, A., Yu, J., Haynes, M., Miljkovic, N., Perry, N. H., Wang, P., Braun, P. V., & Hatzell, M. C. (2025). Emerging Trends and Future Opportunities for Battery Recycling. ACS Energy Letters, 10(1), 107-119. https://doi.org/10.1021/acsenergylett.4c02198
  • 24. International Energy Agency, “Trends in charging infrastruc-ture,” Global EV Outlook 2023. Paris, France: IEA, 2023.
  • 25. Yurdaer, E., & Kocakulak, T. (2021). Comparison of Energy Consumption of Different Electric Vehicle Power Systems Us-ing Fuzzy Logic-Based Regenerative Braking. Engineering Per-spective, 1(1), 11-21. https://doi.org/10.29228/sciperspective.47590
  • 26. Bayzou, R., Soloy, A., Bartoli, T., Haidar, F. (2025). Thermal model of Lithium-ion batteries for hybrid electric vehicles. En-gineering Perspective, 5 (2), 60-67. http://dx.doi.org/10.29228/eng.pers.76492
  • 27. Do, T. T. (2025). Global Optimization of Hysteresis Energy Management Strategies for Fuel Cell Hybrid Electric Vehicles. International Journal of Automotive Science and Technology, 9(2), 276-283. https://doi.org/10.30939/ijastech..1691411
  • 28. Bousseksou, M.O., Nouri, K., Bartoli, T., Bouzidi, W., Bessais, L., (2025). Magnetocaloric Cooling for Hybrid/ Hydrogen and Electric Vehicle Cabin and Powertrain Components. Engineer-ing Perspective, 4 (1), 9-20. http://dx.doi.org/10.29228/eng.pers.77695
  • 29. Abebe, B. A., Çelebi, S., & Kılıç, R. (2024). A Review on Tribological Considerations in the Transition from IC Engines to Electric Vehicles. International Journal of Automotive Science and Technology, 8(3), 369-380. https://doi.org/10.30939/ijastech..1476366
  • 30. Tosun, E., Keyinci, S., Yakaryılmaz, A. C., Yıldızhan, Ş., & Özcanlı, M. (2024). Evaluation of Lithium-ion Batteries in Elec-tric Vehicles. International Journal of Automotive Science and Technology, 8(3), 332-340. https://doi.org/10.30939/ijastech..1460955
  • 31. Nassar, M., Polat, K., Koçlu, Y., Topaç, M.M., (2025). Design and Optimisation of a Double Wishbone Independent Suspen-sion System for an L6 electric Vehicle: A Response Surface Methodology Based Design Application. Engineering Perspec-tive, 5 (1), 21-30. http://dx.doi.org/10.29228/eng.pers.79569
  • 32. Kilic A., (2023). Charging Techniques, Infrastructure, and Their Influences. Engineering Perspective, 3 (4), 68-74. http://dx.doi.org/10.29228/eng.pers.73000
  • 33. Abdullaev, I., Lin, N., & Rashidov, J. (2024). Electric Vehicles: Manuscript of a Bibliometric Analysis Unveiling Trends, Inno-vations and Future Pathways. International Journal of Automo-tive Science and Technology, 8(2), 212-224. https://doi.org/10.30939/ijastech..1424879
  • 34. Can, E. & Demirci, O.K. (2025). Fully Insulated Dual Output DC-DC Converter Battery Charging System with Single Dy-namo Input at the Electric Vehicle. Tehnički vjesnik, 32 (4), 1283-1290. https://doi.org/10.17559/TV-20250112002261
  • 35. Karaman, M., & Korucu, S. (2023). Modeling the Vehicle Movement and Braking Effect of the Hydrostatic Regenerative Braking System. Engineering Perspective, 3(2), 18-26. https://doi.org/10.29228/eng.pers.69826
  • 36. Haidar, F., Laıb, A., Ajwad, S. A., Guılbert, G. (2024). In-tegrated Vehicle Dynamics Modeling, Path Tracking, and Simulation: A MATLAB Implementation Approach. Engi-neering Perspective, 3(1), 7-16. https://doi.org/10.29228/eng.pers.75106
  • 37. Nagareddy, S., Rajeswaran, S. S., Jaganathan, D., … Bala Subramanian, V. P. (n.d.). Turbocharged Six-Cylinder Direct Injection Hydrogen Fueled Spark Ignition Engine Combustion and NOx Control Model. Engineering Perspective, 4(3), 100-110. https://doi.org/10.29228/eng.pers.82203
  • 38. Altun, K. (2025). A Proof-of-Concept for Parameter Manipula-tion in TRIZ: Automotive Case Stud. International Journal of Automotive Science and Technology, 9(2), 166-173. https://doi.org/10.30939/ijastech..1592053
  • 39. Nahian Samin, S. A., Hossen, S., Rahman, K. M. M., Gosh, U. (2024). Lightweighting of a Vehicle Steering Uprights via Structural-Based Design and FEA Analysis. Engineering Per-spective, 3(4), 157-170. https://doi.org/10.29228/eng.pers.78029
  • 40. Djebbar, A. M., & Amina, K. (2025). A Hybrid Approach for Solving the Capacitated Vehicle Routing Problem. International Journal of Automotive Science and Technology, 9(2), 249-258. https://doi.org/10.30939/ijastech..1663305
  • 41. Serarslan, B. (2025). The Impact of Temperature and Ageing on LFP Electric Vehicle Batteries: A Comprehensive Modelling Study. International Journal of Automotive Science and Tech-nology, 9(1), 12-25. https://doi.org/10.30939/ijastech..1519778
There are 41 citations in total.

Details

Primary Language English
Subjects Hybrid and Electric Vehicles and Powertrains, Internal Combustion Engines, Automotive Engineering (Other)
Journal Section Articles
Authors

Oğuz Kürşat Demirci 0000-0003-1572-2607

Publication Date September 30, 2025
Submission Date July 30, 2025
Acceptance Date September 6, 2025
Published in Issue Year 2025 Volume: 5 Issue: 3

Cite

APA Demirci, O. K. (2025). Integrated Emission and Cost Analysis of Battery-Electric Vehicles up to 2035. Engineering Perspective, 5(3), 111-122. https://doi.org/10.64808/engineeringperspective.1753723