Research Article
BibTex RIS Cite

Biosynthesis of Silver@Graphene Oxide Nanocomposite and Determination of It’s Antimicrobial Activity

Year 2020, , 126 - 130, 27.07.2020
https://doi.org/10.32707/ercivet.760738

Abstract

Nanoparticles (NPs), which are widely used in the industry, can be modified with materials such as graphene and chitosan to gain new properties in terms of their hydrophilicity and oxidation capacity. In this study, unlike Ag NP synthesis via Syzygium aromaticum extract, silver graphene oxide nanocomposites (Ag@GO NC) were synthesized different from Ag NP synthesis via Syzygium aromaticum extract and characterized. The antimicrobial activity of Ag@GO NC against to Staphylococcus aureus was tested. As a result of characterization studies, S. aromaticum based Ag NPs have short-term stability (-16.1 mV). Dynamic light scattering (DLS) analysis showed effective diameter of NPs is approximately 327 nm. X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) analysis showed that the crystalinity of NPs and the presence of functional groups in NP synthesis process, respectively. Ag@GO NCs were recorded by Scanning Electron Microscopy (SEM). Ag@GO NCs have been reported to have antimicrobial properties against S. aureus strain. The study is original and innovative in terms of biosynthesis and determining the antimicrobial activities of Ag@GO NCs with S. aromaticum bud extract. It is thought that the data obtained in this study will shed light on the studies in biomedical fields by modifying NPs

References

  • Abbasi BA, Iqbal J, Mahmood T, vd. Biofabrication of iron oxide nanoparticles by leaf extract of Rhamnus virgata: Characterization and evaluation ofcytotoxic, antimicrobial and antioxidant potentials. Appl Organometal Chem 2019; 33: 1-15.
  • Ajitha B, Reddy YAK, Lee Y, Kim MJ, Ahn CW. Biomimetic synthesis of silver nanoparticles using Syzygium aromaticum (clove) extract: Catalytic and antimicrobial effects. Appl Organometal Chem 2019; 33: e4867.
  • Anandan M, Poorani G, Boomi P. Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochem 2019; 80: 80-8.
  • Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, vd. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 2004; 6: 377-82.
  • Bansal H, Kaushal J, Chahar V, Shukla G, Bhatnagar A. green synthesis of silver nanoparticles using Syzygium aromaticum (clove) bud extract: Reaction optimization, characterization and antimicrobial activity. J. Bionanosci 2018; 12: 378-89.
  • Behravan M, Panahi AH, Naghizadeh A, vd. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 2019; 124: 148-54.
  • El-Nour KMMA, Eftaiha A, Al-Warthan A, vd. Synthesis and applications of silver nanoparticles. Arab J Chem 2010; 3: 135-40.
  • Ghaedi M, Yousefinejad M, Safarpoor M, Zare Khafri H, Purkait MK. Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. J Ind Eng Chem 2015; 31: 167-72.
  • Harshiny M, Iswarya CN, Matheswaran M. Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technol 2015; 286: 744-9.
  • Hsu KC, Chen DH. Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity. Nanoscale Res Lett 2014; 9: 1-9.
  • Kaur H, Kaur S, Singh M. Biosynthesis of silver nanoparticles by natural precursor from clove and their antimicrobial activity. Biologia 2013; 68(6): 1048-53.
  • Kumar B, Vizuete KS, Sharma V, vd. Ecofriendly synthesis of monodispersed silver nanoparticles using Andean Mortiño berry as reductant and its photocatalytic activity. Vacuum 2019; 160: 272-8.
  • Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2013; 31: 346-56.
  • Ocsoy I, Tasdemir D, Mazicioglu S, vd. Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Mater Lett 2018; 212: 45-50.
  • Rajesh KM, Ajitha B, Ashok Kumar Reddy Y, Suneetha Y, Sreedhara Reddy P. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 2018; 154: 593-600.
  • Sahu D, Sarkar N, Sahoo G, Mohapatra P, Swain SK. Dual activities of nano silver embedded reduced graphene oxide using clove leaf extracts: Hg2+ sensing and catalytic degradation. Chem Sel 2019; 4: 2593-602.
  • Shi H, Chen X, Lia L, vd. One-pot and one-step synthesis of bioactive urease/ZnFe2O4 nanocomposites and their application in detection of urea. Dalton Trans 2014; 43: 9016-21.
  • Sintubin L, Verstraete W, Boon N. Biologically produced nanosilver: Current state and future perspectives. Biotechnol Bioeng, 2012; 109(10): 2422-36.
  • Some S, Bulut O, Biswas K, vd. Efect of feed supplementation with biosynthesized silver nanoparticles using leaf extract of Morus indica L. V1 on Bombyx mori L. (Lepidoptera: Bombycidae). Sci Rep 2019; 9: 14839.
  • Some S, Kumar Sen I, Mandal A, vd. Biosynthesis of silver nanoparticles and their versatile antimicrobial properties. Mater Res Express 2019; 6: 012001.
  • Strayer AL, Ocsoy I, Tan W, vd. Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. Plant Dis 2016; 100:1460-65.
  • Vasantharaj S, Sathiyavimal S, Senthilkumar P, vd. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation. J Photoch Photobio B 2019;192: 74-82.
  • Venugopal K, Rather HA, Rajagopal K, vd. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J Photoch Photobio B 2017; 167: 282-9.
  • Vijayaraghavan K, Kamala Nalini SP, Udaya Prakash N, Madhankumar D. Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Mater Lett 2012; 75: 33-35.
  • Vinay SP, Chandrasekhar N. Facile green chemistry synthesis of Ag nanoparticles using Areca catechu extracts for the antimicrobial activity and photocatalytic degradation of methylene blue dye. Materials Today: Proceedings 2019; 9: 499-505.
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 2017;12: 1227-49.
  • Yasir M, Singh J, Tripathi MK. vd. Green synthesis of silver nanoparticles using leaf extract of Common arrowhead houseplant and ıts anticandidal activity. Pharmacogn Mag 2017; 13(4): 840-44.

Gümüş@Grafen Oksit Nanokompozitin Biyolojik Sentezi ve Antimikrobiyal Aktivitesinin Belirlenmesi

Year 2020, , 126 - 130, 27.07.2020
https://doi.org/10.32707/ercivet.760738

Abstract

Endüstride yaygın bir şekilde kullanılan nanopartiküller (NP’ler) grafen ve kitosan gibi maddelerle modifiye edilerek hidrofilitesi ve oksidasyon kapasitesinin artması yönüyle yeni özellikler kazanabilmektedir. Bu çalışmada Syzygium aromaticum özütü ile AgNP sentezinden farklı olarak, gümüş grafen oksit nanokompozitler (Ag@GO NK) sentezlenerek karakterizasyonu değerlendirilmiştir. Elde edilen Ag@GO NK’nin Staphylococcus aureus türüne karşı antimikrobiyal aktivitesi test edilmiştir. Karakterizasyon çalışmaları sonucunda, S. aromaticum tabanlı Ag NP’lerin kısa süreli stabiliteye sahip olduğu (-16.1 mV) belirlenmiştir. Dinamik ışık saçılımı (DLS) analizi ile NP’lerin yaklaşık 327 nm etkin çapa sahip olduğu tespit edilmiştir. Sırayla X Işınları Toz Difraksiyon (XRD) ve Fourier Dönüşümlü Kızılötesi Spektroskopisi (FT-IR) analizi ile NP’lerin kristal yapısı ve NP sentezinde işlevsel özelliğe sahip fonksiyonel grupların varlığı gösterilmiştir. Taramalı Elektron Mikroskobu (SEM) ile Ag@GO NK’lerin morfolojileri incelenmiştir. Ag@GO NK’lerin S. aureus suşuna karşı antimikrobiyal özelliğe sahip olduğu bildirilmiştir. Çalışma, S. aromaticum tomurcuk özütü ile Ag@GO NK’lerin bioysentezi ve antimikrobiyal aktivitelerinin belirlenmesi açısından özgün ve yenilikçidir. Çalışmada elde edilen verilerin NP’lerin modifiye edilerek biyomedikal çalışmalara ışık tutacağı düşünülmektedir.

References

  • Abbasi BA, Iqbal J, Mahmood T, vd. Biofabrication of iron oxide nanoparticles by leaf extract of Rhamnus virgata: Characterization and evaluation ofcytotoxic, antimicrobial and antioxidant potentials. Appl Organometal Chem 2019; 33: 1-15.
  • Ajitha B, Reddy YAK, Lee Y, Kim MJ, Ahn CW. Biomimetic synthesis of silver nanoparticles using Syzygium aromaticum (clove) extract: Catalytic and antimicrobial effects. Appl Organometal Chem 2019; 33: e4867.
  • Anandan M, Poorani G, Boomi P. Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa with their antibacterial and anticancer activities. Process Biochem 2019; 80: 80-8.
  • Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, vd. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 2004; 6: 377-82.
  • Bansal H, Kaushal J, Chahar V, Shukla G, Bhatnagar A. green synthesis of silver nanoparticles using Syzygium aromaticum (clove) bud extract: Reaction optimization, characterization and antimicrobial activity. J. Bionanosci 2018; 12: 378-89.
  • Behravan M, Panahi AH, Naghizadeh A, vd. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 2019; 124: 148-54.
  • El-Nour KMMA, Eftaiha A, Al-Warthan A, vd. Synthesis and applications of silver nanoparticles. Arab J Chem 2010; 3: 135-40.
  • Ghaedi M, Yousefinejad M, Safarpoor M, Zare Khafri H, Purkait MK. Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. J Ind Eng Chem 2015; 31: 167-72.
  • Harshiny M, Iswarya CN, Matheswaran M. Biogenic synthesis of iron nanoparticles using Amaranthus dubius leaf extract as a reducing agent. Powder Technol 2015; 286: 744-9.
  • Hsu KC, Chen DH. Microwave-assisted green synthesis of Ag/reduced graphene oxide nanocomposite as a surface-enhanced Raman scattering substrate with high uniformity. Nanoscale Res Lett 2014; 9: 1-9.
  • Kaur H, Kaur S, Singh M. Biosynthesis of silver nanoparticles by natural precursor from clove and their antimicrobial activity. Biologia 2013; 68(6): 1048-53.
  • Kumar B, Vizuete KS, Sharma V, vd. Ecofriendly synthesis of monodispersed silver nanoparticles using Andean Mortiño berry as reductant and its photocatalytic activity. Vacuum 2019; 160: 272-8.
  • Mittal AK, Chisti Y, Banerjee UC. Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 2013; 31: 346-56.
  • Ocsoy I, Tasdemir D, Mazicioglu S, vd. Biomolecules incorporated metallic nanoparticles synthesis and their biomedical applications. Mater Lett 2018; 212: 45-50.
  • Rajesh KM, Ajitha B, Ashok Kumar Reddy Y, Suneetha Y, Sreedhara Reddy P. Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical and antimicrobial properties. Optik 2018; 154: 593-600.
  • Sahu D, Sarkar N, Sahoo G, Mohapatra P, Swain SK. Dual activities of nano silver embedded reduced graphene oxide using clove leaf extracts: Hg2+ sensing and catalytic degradation. Chem Sel 2019; 4: 2593-602.
  • Shi H, Chen X, Lia L, vd. One-pot and one-step synthesis of bioactive urease/ZnFe2O4 nanocomposites and their application in detection of urea. Dalton Trans 2014; 43: 9016-21.
  • Sintubin L, Verstraete W, Boon N. Biologically produced nanosilver: Current state and future perspectives. Biotechnol Bioeng, 2012; 109(10): 2422-36.
  • Some S, Bulut O, Biswas K, vd. Efect of feed supplementation with biosynthesized silver nanoparticles using leaf extract of Morus indica L. V1 on Bombyx mori L. (Lepidoptera: Bombycidae). Sci Rep 2019; 9: 14839.
  • Some S, Kumar Sen I, Mandal A, vd. Biosynthesis of silver nanoparticles and their versatile antimicrobial properties. Mater Res Express 2019; 6: 012001.
  • Strayer AL, Ocsoy I, Tan W, vd. Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse. Plant Dis 2016; 100:1460-65.
  • Vasantharaj S, Sathiyavimal S, Senthilkumar P, vd. Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation. J Photoch Photobio B 2019;192: 74-82.
  • Venugopal K, Rather HA, Rajagopal K, vd. Synthesis of silver nanoparticles (Ag NPs) for anticancer activities (MCF 7 breast and A549 lung cell lines) of the crude extract of Syzygium aromaticum. J Photoch Photobio B 2017; 167: 282-9.
  • Vijayaraghavan K, Kamala Nalini SP, Udaya Prakash N, Madhankumar D. Biomimetic synthesis of silver nanoparticles by aqueous extract of Syzygium aromaticum. Mater Lett 2012; 75: 33-35.
  • Vinay SP, Chandrasekhar N. Facile green chemistry synthesis of Ag nanoparticles using Areca catechu extracts for the antimicrobial activity and photocatalytic degradation of methylene blue dye. Materials Today: Proceedings 2019; 9: 499-505.
  • Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 2017;12: 1227-49.
  • Yasir M, Singh J, Tripathi MK. vd. Green synthesis of silver nanoparticles using leaf extract of Common arrowhead houseplant and ıts anticandidal activity. Pharmacogn Mag 2017; 13(4): 840-44.
There are 27 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Fatih Doğan Koca This is me

Publication Date July 27, 2020
Submission Date February 25, 2020
Acceptance Date June 9, 2020
Published in Issue Year 2020

Cite

APA Koca, F. D. (2020). Gümüş@Grafen Oksit Nanokompozitin Biyolojik Sentezi ve Antimikrobiyal Aktivitesinin Belirlenmesi. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, 17(2), 126-130. https://doi.org/10.32707/ercivet.760738
AMA Koca FD. Gümüş@Grafen Oksit Nanokompozitin Biyolojik Sentezi ve Antimikrobiyal Aktivitesinin Belirlenmesi. Erciyes Üniv Vet Fak Derg. July 2020;17(2):126-130. doi:10.32707/ercivet.760738
Chicago Koca, Fatih Doğan. “Gümüş@Grafen Oksit Nanokompozitin Biyolojik Sentezi Ve Antimikrobiyal Aktivitesinin Belirlenmesi”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 17, no. 2 (July 2020): 126-30. https://doi.org/10.32707/ercivet.760738.
EndNote Koca FD (July 1, 2020) Gümüş@Grafen Oksit Nanokompozitin Biyolojik Sentezi ve Antimikrobiyal Aktivitesinin Belirlenmesi. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 17 2 126–130.
IEEE F. D. Koca, “Gümüş@Grafen Oksit Nanokompozitin Biyolojik Sentezi ve Antimikrobiyal Aktivitesinin Belirlenmesi”, Erciyes Üniv Vet Fak Derg, vol. 17, no. 2, pp. 126–130, 2020, doi: 10.32707/ercivet.760738.
ISNAD Koca, Fatih Doğan. “Gümüş@Grafen Oksit Nanokompozitin Biyolojik Sentezi Ve Antimikrobiyal Aktivitesinin Belirlenmesi”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi 17/2 (July 2020), 126-130. https://doi.org/10.32707/ercivet.760738.
JAMA Koca FD. Gümüş@Grafen Oksit Nanokompozitin Biyolojik Sentezi ve Antimikrobiyal Aktivitesinin Belirlenmesi. Erciyes Üniv Vet Fak Derg. 2020;17:126–130.
MLA Koca, Fatih Doğan. “Gümüş@Grafen Oksit Nanokompozitin Biyolojik Sentezi Ve Antimikrobiyal Aktivitesinin Belirlenmesi”. Erciyes Üniversitesi Veteriner Fakültesi Dergisi, vol. 17, no. 2, 2020, pp. 126-30, doi:10.32707/ercivet.760738.
Vancouver Koca FD. Gümüş@Grafen Oksit Nanokompozitin Biyolojik Sentezi ve Antimikrobiyal Aktivitesinin Belirlenmesi. Erciyes Üniv Vet Fak Derg. 2020;17(2):126-30.