Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 34 Sayı: 2, 20 - 30, 31.08.2018

Öz

Kaynakça

  • [1] Mogck, S., Kooi, B.J., De Hosson, J.Th.M. 2004. Influence of metal–oxide interfaces on L12 ordering in Cu3Pd. Acta Materialia, 52 (2004), 4651–4658.
  • [2] Shah, V., Yang, L. 1999. Nanometre fcc clusters versus bulk bcc alloy: the structure of Cu-Pd catalysts. Philosophical Magazine A, 79 (1999), 2025-2049.
  • [3] Wang, X., Ludwig, K.F., Malis, O., Mainville, J. 2001. Temperature dependence of the diffuse-scattering fine structure in Cu-Pd alloys. Physical Review B, 63 (2001), 1-4.
  • [4] Kamakoti, P., Sholl, D.S. 2003. A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory. Journal of Membrane Science, 225 (2003), 145-154.
  • [5] Kamakoti, P., Sholl, D.S. 2005. Ab initio lattice-gas modeling of interstitial hydrogen diffusion in CuPd alloys. Physical Review B, 71 (2005), 1-9.
  • [6] Wu, E.J., Ceder, G. Using bond-length-dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys. Physical Review B, 67 (2003), 1-7.
  • [7] Rao, F., Way, J.D., McCormick, R.l., Paglieri, S.N. Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chem. Eng. J. 93 (2003), 11-22.
  • [8] Pan, X.L., Kilgus, M., Goldbach, A. 2005. Low-Temperature H2 and N2 Transport Through Thin Pd66Cu34Hx Layers. Catal. Today, 104 (2005), 225-230.
  • [9] Morreale, B.D., Howard, B.H., Iyoha, O., Enick, R.M., Ling, C., Sholl, D.S. 2007. Experimental and computational prediction of the hydrogen transport properties of Pd4S. Ind. Eng. Chem. Res., 46 (19) (2007), 6313-6319.
  • [10] O' Brien, C.P., Howard, B.H., Miller, J.B., Morreale, B.D., Gellman, A.J. 2010. Inhibition of hydrogen transport through Pd and Pd47Cu53 membranes by H2S at 350 C. J. Membr. Sci., 349 (1–2) (2010), 380-384.
  • [11] Peters, T., Kaleta, T., Stange, M., Bredesen, R. 2011. Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production. J. Membr. Sci., 383 (1–2) (2011), 124-134.
  • [12] Sharma, R., Sharma, Y. 2015. Hydrogen permeance studies in ordered ternary Cu-Pd alloys, International Journal of Hydrogen Energy. International Journal of Hydrogen Energy, 40 (2015), 14885-14899.
  • [13] Pintar, A. 2003. Catalytic processes for the purification of drinking water and industrial effluents. Catal. Today, 77 (2003), 451-465.
  • [14] Yu Volkov, A. 2004. Improvements to the Microstructure and Physical Properties of Pd-Cu-Ag Alloys. Platinum Met. Rev., 48 (2004), 3-12.
  • [15] Dahal, S., Kafle, G., Kaphle, G. C., and Adhikari, N.P. 2014. Study of Electronic and Magnetic Properties of CuPd, CuPt, Cu3Pd and Cu3Pt: Tight Binding Linear Muffin-Tin Orbitals Approach. Journal of Institute of Science and Technology, 19(1) (2014), 137-144.
  • [16] Li, M., Du, Z., Guo, C., Li, C. 2008. A thermodynamic modeling of the Cu–Pd system, Computer Coupling of Phase Diagrams and Thermochemistry. Computer Coupling of Phase Diagrams and Thermochemistry, 32 (2008), 439–446.
  • [17] Geng, F., Boes, J.R., Kitchin, J.R. 2017. First-principles study of the Cu-Pd phase diagram. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 56 (2017), 224–229.
  • [18] Cagin, T., Dereli, G., Uludogan, M., and Tomak, M. 1999. Thermal and mechanical properties of some fcc transition metals. Phys. Rev. B, 59(4) (1999), 3468-3472.
  • [19] Zhang, X.J., and Chen, C.L. 2012. Phonon dispersion in the Fcc metals Ca, Sr and Yb. J. Low Temp. Phys., 169 (2012), 40-50.
  • [20] Tolpin, K.A., Bachurin, V.I., and Yurasova, V.E. 2012. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl. Instrum. Methods Phys.Res. B, 273 (2012), 76-79.
  • [21] Louail, L., Maouche, D., Roumili, A., and Hachemi, A. 2005. Pressure effect on elastic constants of some transition metals. Mat. Chem. Phys., 91 (2005), 17-20.
  • [22] Marque´s, L.A., Pelaz, L., Aboy, M., Lopez, P., Barbolla, J. 2005. Atomistic modelling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Comput. Mat. Sci., 33 (2005), 92-105.
  • [23] Shao, Y., Clapp, P.C., Rifkin, J.A. 1996. Molecular dynamics simulation of martensitic transformations in NiAl. Metall. Mater. Trans. A, 27A (1996), 1477-1489.
  • [24] Daw, M.S., Hatcher, R.D. 1985. Application of the embedded atom method to phonons in transition metals. Solid State Comm., 56 (1985), 697-699.
  • [25] Voter, A.F., Chen, S.P. 1987. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc., 82 (1987), 175.
  • [26] Finnis M.W., and Sinclair, J.E. 1984. A simple empirical N-body potential for transition metals. Philosophical Magazine, 50 (1984), 45-55.
  • [27] Sutton, A.P., Chen, J. 1990. Long-range Finnis-Sinclair potentials. J. Philosophical Magazine Letter, 61 (1990), 139-146.
  • [28] Grujicic, M. Dang, P. 1995. Computer simulation of martensitic transformation in Fe-Ni face-centerd cubic alloys. Materials Science and Engineering A, 201 (1995), 194-204.
  • [29] Gui, J., Cui, Y., Xu, S., Wang, Q., Ye, Y., Xiang, M., Wang, R. 1994. Embedded- atom method study of the effect of order degree on the lattice parameters of Cu based shape-memory alloys. J. Phys.: Condens. Matter, 6 (1994), 4601-4614.
  • [30] Caprion, D., Schober, H.R. 2003. Computer Simulation of Liquid and Amorphous Selenium. J. of Non-Crys. Solids, 326 (2003), 369-373.
  • [31] Çagin, T., Qi, Y., Li, H., Kimura, Y., Ikeda, H., Johnson, W.L., Goddard III, W.A. 1999. The quantum Sutton-Chen many-body potential for properties of fcc metals. MRS Symposium Ser., 554 (1999), 43.
  • [32] Parrinello, M., and Rahman, A. 1980. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett., 45 (1980), 1196-1201.
  • [33] Parrinello M., and Rahman, A. 1981. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 52 (1981), 7182-7190.
  • [34] Wolf, R.J., Mansour, K.A., Lee M.W., and Ray, J.R. 1992. Temperature dependence of elastic constants of embedded-atom models of palladium. Phys. Rev. B, 46 (1992), 8027-8035.
  • [35] Karimi, M., Stapay, G., Kaplan T., and Mostoller, M. 1997. Temperature dependence of the elastic constants of Ni: reliability of EAM in predicting thermal properties. Modelling Simul. Mater. Sci. Eng., 5 (1997), 337-346.
  • [36] Haas, H., Wang, C.Z., Ho, K.M., Fahnle M., and Elsasser, C. 1999. Temperature dependence of the phonon frequencies of molybdenum: a tight-binding molecular dynamics study. J. Phys., Condens. Matter, 11 (1999), 5455-5462.
  • [37] Brüesch, P. 1982. Phonons: Theory and Experiments I. Springer-Verlag, Berlin Heidelberg Germany 19s.
  • [38] Kong, L.T. 2011. Phonon dispersion measured directly from molecular dynamics simulations. Computer Physics Communications, 182 (2011), 2201-2207.
  • [39] Kart, S.Ö., Erbay, A., Kılıç, H., Cagin, T., Tomak, M. 2008. Molecular dynamics study of Cu-Pd ordered alloys. Journal of Achievements in Materials and Manufacturing Engineering, 31(1) (2008), 41-46.
  • [40] Prem, M., Krexner, G., Blaschko, O. 1999. Investigation of the two. martensitic phase transitions hcp-dhcp and dhcp-fcc in Co-0.85 at. %Fe by neutron scattering. Mater. Sci. Eng. A, A273–275 (1999), 491-493.
  • [41] Katsnelson, M. I., Maksyutov, A. F., Trefilov, A. V. 2002. Peculiarities of anharmonic effects in the lattice thermodynamics of fcc metals. Condensed Matter Material Science, 0201412 (2002), 1-8.

Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi

Yıl 2018, Cilt: 34 Sayı: 2, 20 - 30, 31.08.2018

Öz

Bu
çalışmada, Cu3Pd düzenli alaşım sisteminin artan sıcaklık ile
akustik fonon frekansları ve doğrusal sıcaklık genleşme katsayısı, hacim
modülü, ikinci derece esneklik sabitleri gibi termoelastik özelliklerinin
değişimi incelendi. Atomlar arasındaki fiziksel etkileşmeleri belirlemek için
çok cisim etkileşmeleri temeline dayanan Gömülmüş Atom Metodu’nun Sutton-Chen
(SC) ve Kuantum Sutton-Chen (K-SC) potansiyel fonksiyonları kullanıldı.
Hesaplamalar sonucu elde edilen değerler literatürde mevcut deneysel ve teorik
sonuçlarla karşılaştırıldı. Kuantum Sutton-Chen fonksiyonunun deneysel
sonuçlara daha yakın değerler ürettiği belirlendi. 

Kaynakça

  • [1] Mogck, S., Kooi, B.J., De Hosson, J.Th.M. 2004. Influence of metal–oxide interfaces on L12 ordering in Cu3Pd. Acta Materialia, 52 (2004), 4651–4658.
  • [2] Shah, V., Yang, L. 1999. Nanometre fcc clusters versus bulk bcc alloy: the structure of Cu-Pd catalysts. Philosophical Magazine A, 79 (1999), 2025-2049.
  • [3] Wang, X., Ludwig, K.F., Malis, O., Mainville, J. 2001. Temperature dependence of the diffuse-scattering fine structure in Cu-Pd alloys. Physical Review B, 63 (2001), 1-4.
  • [4] Kamakoti, P., Sholl, D.S. 2003. A comparison of hydrogen diffusivities in Pd and CuPd alloys using density functional theory. Journal of Membrane Science, 225 (2003), 145-154.
  • [5] Kamakoti, P., Sholl, D.S. 2005. Ab initio lattice-gas modeling of interstitial hydrogen diffusion in CuPd alloys. Physical Review B, 71 (2005), 1-9.
  • [6] Wu, E.J., Ceder, G. Using bond-length-dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys. Physical Review B, 67 (2003), 1-7.
  • [7] Rao, F., Way, J.D., McCormick, R.l., Paglieri, S.N. Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chem. Eng. J. 93 (2003), 11-22.
  • [8] Pan, X.L., Kilgus, M., Goldbach, A. 2005. Low-Temperature H2 and N2 Transport Through Thin Pd66Cu34Hx Layers. Catal. Today, 104 (2005), 225-230.
  • [9] Morreale, B.D., Howard, B.H., Iyoha, O., Enick, R.M., Ling, C., Sholl, D.S. 2007. Experimental and computational prediction of the hydrogen transport properties of Pd4S. Ind. Eng. Chem. Res., 46 (19) (2007), 6313-6319.
  • [10] O' Brien, C.P., Howard, B.H., Miller, J.B., Morreale, B.D., Gellman, A.J. 2010. Inhibition of hydrogen transport through Pd and Pd47Cu53 membranes by H2S at 350 C. J. Membr. Sci., 349 (1–2) (2010), 380-384.
  • [11] Peters, T., Kaleta, T., Stange, M., Bredesen, R. 2011. Development of thin binary and ternary Pd-based alloy membranes for use in hydrogen production. J. Membr. Sci., 383 (1–2) (2011), 124-134.
  • [12] Sharma, R., Sharma, Y. 2015. Hydrogen permeance studies in ordered ternary Cu-Pd alloys, International Journal of Hydrogen Energy. International Journal of Hydrogen Energy, 40 (2015), 14885-14899.
  • [13] Pintar, A. 2003. Catalytic processes for the purification of drinking water and industrial effluents. Catal. Today, 77 (2003), 451-465.
  • [14] Yu Volkov, A. 2004. Improvements to the Microstructure and Physical Properties of Pd-Cu-Ag Alloys. Platinum Met. Rev., 48 (2004), 3-12.
  • [15] Dahal, S., Kafle, G., Kaphle, G. C., and Adhikari, N.P. 2014. Study of Electronic and Magnetic Properties of CuPd, CuPt, Cu3Pd and Cu3Pt: Tight Binding Linear Muffin-Tin Orbitals Approach. Journal of Institute of Science and Technology, 19(1) (2014), 137-144.
  • [16] Li, M., Du, Z., Guo, C., Li, C. 2008. A thermodynamic modeling of the Cu–Pd system, Computer Coupling of Phase Diagrams and Thermochemistry. Computer Coupling of Phase Diagrams and Thermochemistry, 32 (2008), 439–446.
  • [17] Geng, F., Boes, J.R., Kitchin, J.R. 2017. First-principles study of the Cu-Pd phase diagram. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry, 56 (2017), 224–229.
  • [18] Cagin, T., Dereli, G., Uludogan, M., and Tomak, M. 1999. Thermal and mechanical properties of some fcc transition metals. Phys. Rev. B, 59(4) (1999), 3468-3472.
  • [19] Zhang, X.J., and Chen, C.L. 2012. Phonon dispersion in the Fcc metals Ca, Sr and Yb. J. Low Temp. Phys., 169 (2012), 40-50.
  • [20] Tolpin, K.A., Bachurin, V.I., and Yurasova, V.E. 2012. Features of energy dependence of NiPd sputtering for various ion irradiation angles. Nucl. Instrum. Methods Phys.Res. B, 273 (2012), 76-79.
  • [21] Louail, L., Maouche, D., Roumili, A., and Hachemi, A. 2005. Pressure effect on elastic constants of some transition metals. Mat. Chem. Phys., 91 (2005), 17-20.
  • [22] Marque´s, L.A., Pelaz, L., Aboy, M., Lopez, P., Barbolla, J. 2005. Atomistic modelling of dopant implantation and annealing in Si: damage evolution, dopant diffusion and activation. Comput. Mat. Sci., 33 (2005), 92-105.
  • [23] Shao, Y., Clapp, P.C., Rifkin, J.A. 1996. Molecular dynamics simulation of martensitic transformations in NiAl. Metall. Mater. Trans. A, 27A (1996), 1477-1489.
  • [24] Daw, M.S., Hatcher, R.D. 1985. Application of the embedded atom method to phonons in transition metals. Solid State Comm., 56 (1985), 697-699.
  • [25] Voter, A.F., Chen, S.P. 1987. Accurate Interatomic Potentials for Ni, Al, and Ni3Al. Mat. Res. Soc. Symp. Proc., 82 (1987), 175.
  • [26] Finnis M.W., and Sinclair, J.E. 1984. A simple empirical N-body potential for transition metals. Philosophical Magazine, 50 (1984), 45-55.
  • [27] Sutton, A.P., Chen, J. 1990. Long-range Finnis-Sinclair potentials. J. Philosophical Magazine Letter, 61 (1990), 139-146.
  • [28] Grujicic, M. Dang, P. 1995. Computer simulation of martensitic transformation in Fe-Ni face-centerd cubic alloys. Materials Science and Engineering A, 201 (1995), 194-204.
  • [29] Gui, J., Cui, Y., Xu, S., Wang, Q., Ye, Y., Xiang, M., Wang, R. 1994. Embedded- atom method study of the effect of order degree on the lattice parameters of Cu based shape-memory alloys. J. Phys.: Condens. Matter, 6 (1994), 4601-4614.
  • [30] Caprion, D., Schober, H.R. 2003. Computer Simulation of Liquid and Amorphous Selenium. J. of Non-Crys. Solids, 326 (2003), 369-373.
  • [31] Çagin, T., Qi, Y., Li, H., Kimura, Y., Ikeda, H., Johnson, W.L., Goddard III, W.A. 1999. The quantum Sutton-Chen many-body potential for properties of fcc metals. MRS Symposium Ser., 554 (1999), 43.
  • [32] Parrinello, M., and Rahman, A. 1980. Crystal Structure and Pair Potentials: A Molecular-Dynamics Study. Phys. Rev. Lett., 45 (1980), 1196-1201.
  • [33] Parrinello M., and Rahman, A. 1981. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 52 (1981), 7182-7190.
  • [34] Wolf, R.J., Mansour, K.A., Lee M.W., and Ray, J.R. 1992. Temperature dependence of elastic constants of embedded-atom models of palladium. Phys. Rev. B, 46 (1992), 8027-8035.
  • [35] Karimi, M., Stapay, G., Kaplan T., and Mostoller, M. 1997. Temperature dependence of the elastic constants of Ni: reliability of EAM in predicting thermal properties. Modelling Simul. Mater. Sci. Eng., 5 (1997), 337-346.
  • [36] Haas, H., Wang, C.Z., Ho, K.M., Fahnle M., and Elsasser, C. 1999. Temperature dependence of the phonon frequencies of molybdenum: a tight-binding molecular dynamics study. J. Phys., Condens. Matter, 11 (1999), 5455-5462.
  • [37] Brüesch, P. 1982. Phonons: Theory and Experiments I. Springer-Verlag, Berlin Heidelberg Germany 19s.
  • [38] Kong, L.T. 2011. Phonon dispersion measured directly from molecular dynamics simulations. Computer Physics Communications, 182 (2011), 2201-2207.
  • [39] Kart, S.Ö., Erbay, A., Kılıç, H., Cagin, T., Tomak, M. 2008. Molecular dynamics study of Cu-Pd ordered alloys. Journal of Achievements in Materials and Manufacturing Engineering, 31(1) (2008), 41-46.
  • [40] Prem, M., Krexner, G., Blaschko, O. 1999. Investigation of the two. martensitic phase transitions hcp-dhcp and dhcp-fcc in Co-0.85 at. %Fe by neutron scattering. Mater. Sci. Eng. A, A273–275 (1999), 491-493.
  • [41] Katsnelson, M. I., Maksyutov, A. F., Trefilov, A. V. 2002. Peculiarities of anharmonic effects in the lattice thermodynamics of fcc metals. Condensed Matter Material Science, 0201412 (2002), 1-8.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Sefa Kazanç

Yayımlanma Tarihi 31 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 34 Sayı: 2

Kaynak Göster

APA Kazanç, S. (2018). Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 34(2), 20-30.
AMA Kazanç S. Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Ağustos 2018;34(2):20-30.
Chicago Kazanç, Sefa. “Cu3Pd Alaşımın Fonon Spektrumu Ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 34, sy. 2 (Ağustos 2018): 20-30.
EndNote Kazanç S (01 Ağustos 2018) Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 34 2 20–30.
IEEE S. Kazanç, “Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 34, sy. 2, ss. 20–30, 2018.
ISNAD Kazanç, Sefa. “Cu3Pd Alaşımın Fonon Spektrumu Ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 34/2 (Ağustos 2018), 20-30.
JAMA Kazanç S. Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2018;34:20–30.
MLA Kazanç, Sefa. “Cu3Pd Alaşımın Fonon Spektrumu Ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 34, sy. 2, 2018, ss. 20-30.
Vancouver Kazanç S. Cu3Pd Alaşımın Fonon Spektrumu ve Termoelastik Özelliklerinin Moleküler Dinamik Benzetimi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2018;34(2):20-3.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.