Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Theoretical B3LYP Study on Electronic Structure of Contrast Agent Iopromide

Year 2020, Volume 36, Issue 3, 443 - 455, 31.12.2020

Abstract

The molecular structure of iopromide was determined by DFT calculations at B3LYP/CEP-121G and PBE/TZP levels. Electronic, structural, and thermodynamic properties, magnetic moment, static and dynamic polarizability (α and Δα) and hyperpolarizability (βγ) of iopromide compound were determined by using B3LYP method with the CEP-4G, CEP-31G, CEP-121G, DGDZVP and LANL2DZ basis sets in gas phase and different solvents such as chloroform, acetic acid, ethanol, DMF, DMSO, water with the assistance of Gaussian 09 software. The effect of solvent on parameters has been studied. Time dependent density functional theory (TD-DFT) has also been used to calculate the optical absorption spectrum of iopromide in gas phase and in different solvents.

References

  • [1] Almén, T. 1994. The etiology of contrast medium reactions. Invest Radiol; 29 Suppl. 1, 37-45.
  • [2] Stacul, F. 2001. Current iodinated contrast media. Eur. Radiol. 11, 690-697.
  • [3] Kooiman, J., Pasha, S. M., Zondag, W., et al. 2011. Meta-analysis: serum creatinine changes following contrast enhanced CT imaging, Eur. J. Radiol., 81, 2554–2561.
  • [4] Seong, J. M., Choi, N. M., Lee, J. Y., Chang, Y., Kim, Y., Yang, B. R., Jin, X. M., Kim, J. Y., Park, B. J. 2013. Comparison of the Safety of Seven Iodinated Contrast Media. Korean Med Sci. 28: 1703-1710.
  • [5] Zhejiang, S. 2012. Synthesis of Iopromide, Chinese Journal of Pharmaceuticals. 43, I7, 527-529
  • [6] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
  • [7] Dennington II R. D.; Keith T.A.; Millam J.M. 2009. GaussView 5.0, Wallingford, CT.
  • [8] Stephens, P. J., Devlin, F. J., Chabalowski, C. F., Frisch, M. J. 1994. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 98, 11623-11627.
  • [9] Ozimiński, W. P., Garnuszek, P., Bednarek, E., Cz Dobrowolski, J. 2007. The platinum complexes with histamine: Pt(II)(Hist)Cl2, Pt(II)(Iodo-Hist)Cl2 and Pt(IV)(Hist)2Cl2. Inorg. Chim. Acta. 360, 1902-1914.
  • [10] Stevens, W. J., Basch, H., Krauss, M. 1984. Compact effective potentials and efficient shared-exponent basis-sets for the 1st-row and 2nd-row atoms, J. Chem. Phys., 81, 6026-6023.
  • [11] Gao, H. 2011. Theoretical studies of molecular structures and properties of platinum (II) antitumor drugs. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 79, 687-693.
  • [12] Kaya, S., Kaya, C., Guo, L., Kandemirli, F., Tüzün, B., Uğurlu, İ., Madkour, L. H., Saracoglu, M. 2016. Quantum chemical and molecular dynamics simulation studies on inhibition performances of some thiazole and thiadiazole derivatives against corrosion of iron, J. Mol. Liq., 219, 497-504.
  • [13] Ebenso, E. E., Arslan, T., Kandemirli, F., Love, I., Öğretir, C., Saracoglu, M., Umoren, S. A. 2010. Theoretical studies of some sulphonamides as corrosion inhibitors for mild steel in acidic medium, Int. J. Quantum Chem., 110, 2614-2636.
  • [14] Amin, M. A., Ahmed, M. A., Arida, H. A., Arslan, T., Saracoglu, M., Kandemirli, F. 2011. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series-Part II. Temperature effect, activation energies and thermodynamics of adsorption, Corros. Sci., 53, 540-548.
  • [15] Amin, M. A., Ahmed, M. A., Arida, H. A., Kandemirli, F., Saracoglu, M., Arslan, T., Basaran, M. A. 2011. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series-Part III. Immersion time effects and theoretical studies, Corros. Sci., 53, 1895-1909.
  • [16] Zor, S., Saracoglu, M., Kandemirli, F., Arslan, T. 2011. Inhibition effects of amides on the corrosion of copper in 1.0 M HCl: Theoretical and experimental studies, Corrosion, 67, 12, 125003-1-125003-11 (11 pages).
  • [17] Kandemirli, F., Saracoglu, M., Bulut, G., Ebenso, E., Arslan, T., Kayan, A. 2012. Synthesis and theoretical study of zinc(II) and nickel(II) complexes of 5-methoxyisatin 3-[N-(4-chlorophenyl)thiosemicarbazone], ITB J. Science (J. Math. and Fund. Sci.), 44A, 35-50.
  • [18] Amin, M. A., Hazzazi, O. A., Kandemirli, F., Saracoglu, M. 2012. Inhibition performance and adsorptive behaviour of three amino acids on cold rolled steel in 1.0 M HCl-chemical, electrochemical and morphological studies, Corrosion, 68, 688-698.
  • [19] Kandemirli, F., Saracoglu, M., Amin, M. A., Basaran, M. A., Vurdu, C. D. 2014. The Quantum chemical calculations of serine, therionine and glutamine, Int. J. Electrochem. Sci., 9, 3819-3827.
  • [20] Amin, M. A., El-Bagoury, N., Saracoglu, M., Ramadan, M. 2014. Electrochemical and corrosion behavior of cast re-containing inconel 718 alloys in sulphuric acid solutions and the effect of Cl-, Int. J. Electrochem. Sci., 9, 5352-5374.
  • [21] Kandemirli, F., Vurdu, C. D., Saracoglu, M., Akkaya, Y.Cavus, M. S. 2015. Some molecular properties and reaction mechanism of synthesized isatin thiosemicarbazone and its zinc(II) and nickel(II) complexes, Int. Res. J. Pure and Applied Chem., 9, 1-16.
  • [22] El-Bagoury, N., Amin, M. A., Saracoglu, M. 2015. Effect of aging treatment on the electrochemical and corrosion behavior of nitire shape memory alloy, Int. J. Electrochem. Sci., 10, 5291-5308.
  • [23] İlhan, İ. Ö., Çadır, M., Saracoglu, M., Kandemirli, F., Kökbudak, Z., Akkoç, S. 2015. The reactions and quantum chemical calculations of some pyrazole-3-carboxylic acid chlorides with various hydrazides, Chem. Sci. Rev. Lett., 4, 838-850.
  • [24] Amin, M. A., Fadlallah, S. A., Alosaimi, G. S., Kandemirli, F., Saracoglu, M., Szunerits, S., Boukherroub, R. 2016. Cathodic activation of titanium-supported gold nanoparticles: an efficient and stable electrocatalyst for the hydrogen evolution reaction, Int. J. Hyd. Energy, 41, 6326-6341.
  • [25] Tazouti, A., Galai, M., Touir, R., Ebn Touhami, M., Zarrouk, A., Ramli, Y., Saraçoğlu, M., Kaya, S., Kandemirli, F., Kaya, C. 2016. Experimental and theoretical studies for mild steel corrosion inhibition in 1 M HCl by three new quinoxalinone derivatives, J. Mol. Liquids, 221, 815-832.
  • [26] Amin, M. A., Saracoglu, M., El-Bagoury, N., Sharshar, T., Ibrahim, M. M., Wysocka, J., Krakowiak, S., Ryl, J. 2016. Microstructure and corrosion behaviour of carbon steel and ferritic and austenitic stainless steels in NaCl solutions and the effect of p-Nitrophenyl phosphate disodium salt, Int. J. Electrochem. Sci., 11, 10029-10052.
  • [27] Saracoglu, M., Kandemirli, F., Ozalp, A., Kokbudak, Z. 2017. Synthesis and quantum chemical calculations of 2,4-dioxopentanoic acid derivatives-Part I, Chem. Sci. Rev. Lett., 6, 1-11.
  • [28] Saracoglu, M., Kandemirli, F., Ozalp, A., Kokbudak, Z. 2017. Synthesis and quantum chemical calculations of 2,4-dioxopentanoic acid derivatives-part II, Int. J. Sci. Eng. Inv., 6, 50-57.
  • [29] Saima, B., Khan, A., Un Nisa, R., Mahmood, T., Ayub, K. 2016. Theoretical insights into thermal cyclophanediene to dihydropyrene electrocyclic reactions; a comparative study of Woodward Hoffmann allowed and forbidden reactions, J. Mol. Model., 22, 81 (9 pages).
  • [30] Saracoglu, M., Elusta, M. I. A., Kaya, S., Kaya, C., Kandemirli, F. 2018. Quantum chemical studies on the corrosion inhibition of Fe78B13Si9 glassy alloy in Na2SO4 solution of some thiosemicarbazone derivatives, Int. J. Electrochem. Sci., 13, 8241-8259.
  • [31] Saracoglu, M., Kokbudak, Z., Çimen, Z., Kandemirli, F. 2019. Synthesis and DFT Quantum Chemical Calculations of Novel Pyrazolo[1,5-c]pyrimidin-7(1H)-one Derivatives, J. Chem. Soc. Pak., 41, 5-841-858.
  • [32] Saracoglu, M., Kandemirli, S.G., Başaran, A., Sayiner, H., Kandemirli, F. 2011. Investigation of structure-activity relationship between chemical structure and CCR5 anti HIV-1 activity in a class of 1-[N-(methyl)-N-(phenylsulfonyl)amino]-2-(phenyl)-4-[4-(substituted)piperidin-1-yl] butanes derivatives: The electronic-topological approach, Curr. HIV Res., 9, 300-312.
  • [33] Saracoglu, M., Kandemirli, F., Amin, M. A., Vurdu, C. D., Cavus, M. S., Sayıner, G. 2015. The quantum chemical calculations of some thiazole derivatives, Proceedings of the 3rd International Conference on Computation for Science and Technology (ICCST-3), Published by Atlantis Press, 5, 149-154.
  • [34] Khaled, K. F. 2010. Studies of iron corrosion inhibition using chemical, electrochemical and computer simulation techniques, Electrochim. Acta, 55, 6523-6532.
  • [35] Dewar, M. J., Thiel, W. 1977. Ground states of molecules. 38. The MNDO method. Approximations and parameters, J. Am. Chem. Soc., 99, 4899-4907.
  • [36] Pearson, R. G. 1990. Hard and soft acids and bases-the evolution of a chemical concept, Coord. Chem. Rev., 100, 403-425.
  • [37] Pauling, L. 1960. The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York.
  • [38] Parr, R. G., Pearson, R.G. 1983. Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc., 105, 7512-7516.
  • [39] Chattaraj, P. K., Sarkar, U., Roy, D.R. 2006. Electrophilicity index, Chem. Rev., 106, 2065-2091.
  • [40] Ebenso, E. E., Kabanda, M. M., Arslan, T., Saracoglu, M., Kandemirli, F., Murulana, L. C., Singh, A. K., Shukla, S. K., Hammouti, B., Khaled, K. F., Quraishi, M. A., Obot, I. B., Edd, N. O. 2012. Quantum chemical investigations on quinoline derivatives as effective corrosion inhibitors for mild steel in acidic medium, Int. J. Electrochem. Sci., 7, 5643-5676.
  • [41] Ding L, Ying H, Zhou Y, Lei T, Pei J. 2010. Polycyclic imide derivatives: Synthesis and effective tuning of lowest unoccupied molecular orbital levels through molecular engineering, Org. Lett. 12(23), 5522-5525.
  • [42] Abbaz, T., Benjeddou, A., Villemin, D. 2018. Molecular structure, HOMO, LUMO, MEP, Natural bond orbital analysis of benzo and Anthraquinodimethane Derivatives. Pharmaceutical and Biological Evaluations 5(2) 27-39.
  • [43] Krishnan, R., Binkley, J. S., Seeger, R., et al. 1980. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, Journal of Chemical Physics, 72, 650-655.
  • [44] Ben Ahmed, A., Feki, H., Abid, Y., Boughzala, H., Mlayah, A. 2008. Structural, vibrational and theoretical studies of l-histidine bromide, J. Mol. Struct., 888, 1-3, 180-186.
  • [45] Janjua, M. R. S. A., Mahmood, A., Ahmad, F. 2013. Solvent effects on nonlinear optical response of certain tetrammineruthenium (II) complexes of modified 1,10-phenanthrolines, Can. J. Chem., Vol. 91 (12), 1303-1309
  • [46] Mikkelsen, K. V.; Luo, Y.; Agren, H.; Jùrgensen, P. J. 1994. Solvent induced polarizabilities and hyperpolarizabilities of para-nitroaniline studied by reaction field linear response theory J. Chem. Phys., 100, 8240-8250.
  • [47] Bartkowiak, W.; Lipinski, J. 1998. Solvent effect on the nonlinear optical properties of para-nitroaniline studied by Langevin dipoles–Monte Carlo (LD/MC) approach, Comput. Chem. 22 (1), 31-37.
  • [48] Govindarajan, M., Karabacak, M. 2012. FT-IR, FT-Raman and UV spectral investigation; computed frequency estimation, analysis and electronic structure calculations on 1-nitronaphthalene, Spectrochimica Acta Part A, 85, 251–260.

Kontrast Ajan Iopromidinin Elektronik Yapısı Üzerine Teorik B3LYP Çalışması

Year 2020, Volume 36, Issue 3, 443 - 455, 31.12.2020

Abstract

İyopromidinin moleküler yapısı, B3LYP/CEP-121G ve PBE/TZP seviyelerinde DFT hesaplamaları ile belirlenmiştir. İyoprimidinin bileşiğinin gaz fazı ve farklı çözücülerde örnek olarak, kloroform, asetik asit, etanol, DMF, DMSO, su, elektronik, yapısal ve termodinamik özellikleri, manyetik momenti, statik ve dinamik polarizasyonu (α ve Δα) ve hiperpolarizasyon kabiliyeti (β, γ), B3LYP yönteminin CEP-4G, CEP-31G, CEP-121G, DGDZVP ve LANL2DZ baz setleri kullanılarak Gaussian 09 yazılımı yardımıyla belirlenmiştir. Zamana bağlı yoğunluk fonksiyonel teorisi (TD-DFT) ile gaz fazında ve farklı çözücülerdeki iyopromidinin optik absorpsiyon spektrumunu hesaplamak için de kullanılmıştır.

References

  • [1] Almén, T. 1994. The etiology of contrast medium reactions. Invest Radiol; 29 Suppl. 1, 37-45.
  • [2] Stacul, F. 2001. Current iodinated contrast media. Eur. Radiol. 11, 690-697.
  • [3] Kooiman, J., Pasha, S. M., Zondag, W., et al. 2011. Meta-analysis: serum creatinine changes following contrast enhanced CT imaging, Eur. J. Radiol., 81, 2554–2561.
  • [4] Seong, J. M., Choi, N. M., Lee, J. Y., Chang, Y., Kim, Y., Yang, B. R., Jin, X. M., Kim, J. Y., Park, B. J. 2013. Comparison of the Safety of Seven Iodinated Contrast Media. Korean Med Sci. 28: 1703-1710.
  • [5] Zhejiang, S. 2012. Synthesis of Iopromide, Chinese Journal of Pharmaceuticals. 43, I7, 527-529
  • [6] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
  • [7] Dennington II R. D.; Keith T.A.; Millam J.M. 2009. GaussView 5.0, Wallingford, CT.
  • [8] Stephens, P. J., Devlin, F. J., Chabalowski, C. F., Frisch, M. J. 1994. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 98, 11623-11627.
  • [9] Ozimiński, W. P., Garnuszek, P., Bednarek, E., Cz Dobrowolski, J. 2007. The platinum complexes with histamine: Pt(II)(Hist)Cl2, Pt(II)(Iodo-Hist)Cl2 and Pt(IV)(Hist)2Cl2. Inorg. Chim. Acta. 360, 1902-1914.
  • [10] Stevens, W. J., Basch, H., Krauss, M. 1984. Compact effective potentials and efficient shared-exponent basis-sets for the 1st-row and 2nd-row atoms, J. Chem. Phys., 81, 6026-6023.
  • [11] Gao, H. 2011. Theoretical studies of molecular structures and properties of platinum (II) antitumor drugs. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy. 79, 687-693.
  • [12] Kaya, S., Kaya, C., Guo, L., Kandemirli, F., Tüzün, B., Uğurlu, İ., Madkour, L. H., Saracoglu, M. 2016. Quantum chemical and molecular dynamics simulation studies on inhibition performances of some thiazole and thiadiazole derivatives against corrosion of iron, J. Mol. Liq., 219, 497-504.
  • [13] Ebenso, E. E., Arslan, T., Kandemirli, F., Love, I., Öğretir, C., Saracoglu, M., Umoren, S. A. 2010. Theoretical studies of some sulphonamides as corrosion inhibitors for mild steel in acidic medium, Int. J. Quantum Chem., 110, 2614-2636.
  • [14] Amin, M. A., Ahmed, M. A., Arida, H. A., Arslan, T., Saracoglu, M., Kandemirli, F. 2011. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series-Part II. Temperature effect, activation energies and thermodynamics of adsorption, Corros. Sci., 53, 540-548.
  • [15] Amin, M. A., Ahmed, M. A., Arida, H. A., Kandemirli, F., Saracoglu, M., Arslan, T., Basaran, M. A. 2011. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series-Part III. Immersion time effects and theoretical studies, Corros. Sci., 53, 1895-1909.
  • [16] Zor, S., Saracoglu, M., Kandemirli, F., Arslan, T. 2011. Inhibition effects of amides on the corrosion of copper in 1.0 M HCl: Theoretical and experimental studies, Corrosion, 67, 12, 125003-1-125003-11 (11 pages).
  • [17] Kandemirli, F., Saracoglu, M., Bulut, G., Ebenso, E., Arslan, T., Kayan, A. 2012. Synthesis and theoretical study of zinc(II) and nickel(II) complexes of 5-methoxyisatin 3-[N-(4-chlorophenyl)thiosemicarbazone], ITB J. Science (J. Math. and Fund. Sci.), 44A, 35-50.
  • [18] Amin, M. A., Hazzazi, O. A., Kandemirli, F., Saracoglu, M. 2012. Inhibition performance and adsorptive behaviour of three amino acids on cold rolled steel in 1.0 M HCl-chemical, electrochemical and morphological studies, Corrosion, 68, 688-698.
  • [19] Kandemirli, F., Saracoglu, M., Amin, M. A., Basaran, M. A., Vurdu, C. D. 2014. The Quantum chemical calculations of serine, therionine and glutamine, Int. J. Electrochem. Sci., 9, 3819-3827.
  • [20] Amin, M. A., El-Bagoury, N., Saracoglu, M., Ramadan, M. 2014. Electrochemical and corrosion behavior of cast re-containing inconel 718 alloys in sulphuric acid solutions and the effect of Cl-, Int. J. Electrochem. Sci., 9, 5352-5374.
  • [21] Kandemirli, F., Vurdu, C. D., Saracoglu, M., Akkaya, Y.Cavus, M. S. 2015. Some molecular properties and reaction mechanism of synthesized isatin thiosemicarbazone and its zinc(II) and nickel(II) complexes, Int. Res. J. Pure and Applied Chem., 9, 1-16.
  • [22] El-Bagoury, N., Amin, M. A., Saracoglu, M. 2015. Effect of aging treatment on the electrochemical and corrosion behavior of nitire shape memory alloy, Int. J. Electrochem. Sci., 10, 5291-5308.
  • [23] İlhan, İ. Ö., Çadır, M., Saracoglu, M., Kandemirli, F., Kökbudak, Z., Akkoç, S. 2015. The reactions and quantum chemical calculations of some pyrazole-3-carboxylic acid chlorides with various hydrazides, Chem. Sci. Rev. Lett., 4, 838-850.
  • [24] Amin, M. A., Fadlallah, S. A., Alosaimi, G. S., Kandemirli, F., Saracoglu, M., Szunerits, S., Boukherroub, R. 2016. Cathodic activation of titanium-supported gold nanoparticles: an efficient and stable electrocatalyst for the hydrogen evolution reaction, Int. J. Hyd. Energy, 41, 6326-6341.
  • [25] Tazouti, A., Galai, M., Touir, R., Ebn Touhami, M., Zarrouk, A., Ramli, Y., Saraçoğlu, M., Kaya, S., Kandemirli, F., Kaya, C. 2016. Experimental and theoretical studies for mild steel corrosion inhibition in 1 M HCl by three new quinoxalinone derivatives, J. Mol. Liquids, 221, 815-832.
  • [26] Amin, M. A., Saracoglu, M., El-Bagoury, N., Sharshar, T., Ibrahim, M. M., Wysocka, J., Krakowiak, S., Ryl, J. 2016. Microstructure and corrosion behaviour of carbon steel and ferritic and austenitic stainless steels in NaCl solutions and the effect of p-Nitrophenyl phosphate disodium salt, Int. J. Electrochem. Sci., 11, 10029-10052.
  • [27] Saracoglu, M., Kandemirli, F., Ozalp, A., Kokbudak, Z. 2017. Synthesis and quantum chemical calculations of 2,4-dioxopentanoic acid derivatives-Part I, Chem. Sci. Rev. Lett., 6, 1-11.
  • [28] Saracoglu, M., Kandemirli, F., Ozalp, A., Kokbudak, Z. 2017. Synthesis and quantum chemical calculations of 2,4-dioxopentanoic acid derivatives-part II, Int. J. Sci. Eng. Inv., 6, 50-57.
  • [29] Saima, B., Khan, A., Un Nisa, R., Mahmood, T., Ayub, K. 2016. Theoretical insights into thermal cyclophanediene to dihydropyrene electrocyclic reactions; a comparative study of Woodward Hoffmann allowed and forbidden reactions, J. Mol. Model., 22, 81 (9 pages).
  • [30] Saracoglu, M., Elusta, M. I. A., Kaya, S., Kaya, C., Kandemirli, F. 2018. Quantum chemical studies on the corrosion inhibition of Fe78B13Si9 glassy alloy in Na2SO4 solution of some thiosemicarbazone derivatives, Int. J. Electrochem. Sci., 13, 8241-8259.
  • [31] Saracoglu, M., Kokbudak, Z., Çimen, Z., Kandemirli, F. 2019. Synthesis and DFT Quantum Chemical Calculations of Novel Pyrazolo[1,5-c]pyrimidin-7(1H)-one Derivatives, J. Chem. Soc. Pak., 41, 5-841-858.
  • [32] Saracoglu, M., Kandemirli, S.G., Başaran, A., Sayiner, H., Kandemirli, F. 2011. Investigation of structure-activity relationship between chemical structure and CCR5 anti HIV-1 activity in a class of 1-[N-(methyl)-N-(phenylsulfonyl)amino]-2-(phenyl)-4-[4-(substituted)piperidin-1-yl] butanes derivatives: The electronic-topological approach, Curr. HIV Res., 9, 300-312.
  • [33] Saracoglu, M., Kandemirli, F., Amin, M. A., Vurdu, C. D., Cavus, M. S., Sayıner, G. 2015. The quantum chemical calculations of some thiazole derivatives, Proceedings of the 3rd International Conference on Computation for Science and Technology (ICCST-3), Published by Atlantis Press, 5, 149-154.
  • [34] Khaled, K. F. 2010. Studies of iron corrosion inhibition using chemical, electrochemical and computer simulation techniques, Electrochim. Acta, 55, 6523-6532.
  • [35] Dewar, M. J., Thiel, W. 1977. Ground states of molecules. 38. The MNDO method. Approximations and parameters, J. Am. Chem. Soc., 99, 4899-4907.
  • [36] Pearson, R. G. 1990. Hard and soft acids and bases-the evolution of a chemical concept, Coord. Chem. Rev., 100, 403-425.
  • [37] Pauling, L. 1960. The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York.
  • [38] Parr, R. G., Pearson, R.G. 1983. Absolute hardness: companion parameter to absolute electronegativity, J. Am. Chem. Soc., 105, 7512-7516.
  • [39] Chattaraj, P. K., Sarkar, U., Roy, D.R. 2006. Electrophilicity index, Chem. Rev., 106, 2065-2091.
  • [40] Ebenso, E. E., Kabanda, M. M., Arslan, T., Saracoglu, M., Kandemirli, F., Murulana, L. C., Singh, A. K., Shukla, S. K., Hammouti, B., Khaled, K. F., Quraishi, M. A., Obot, I. B., Edd, N. O. 2012. Quantum chemical investigations on quinoline derivatives as effective corrosion inhibitors for mild steel in acidic medium, Int. J. Electrochem. Sci., 7, 5643-5676.
  • [41] Ding L, Ying H, Zhou Y, Lei T, Pei J. 2010. Polycyclic imide derivatives: Synthesis and effective tuning of lowest unoccupied molecular orbital levels through molecular engineering, Org. Lett. 12(23), 5522-5525.
  • [42] Abbaz, T., Benjeddou, A., Villemin, D. 2018. Molecular structure, HOMO, LUMO, MEP, Natural bond orbital analysis of benzo and Anthraquinodimethane Derivatives. Pharmaceutical and Biological Evaluations 5(2) 27-39.
  • [43] Krishnan, R., Binkley, J. S., Seeger, R., et al. 1980. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, Journal of Chemical Physics, 72, 650-655.
  • [44] Ben Ahmed, A., Feki, H., Abid, Y., Boughzala, H., Mlayah, A. 2008. Structural, vibrational and theoretical studies of l-histidine bromide, J. Mol. Struct., 888, 1-3, 180-186.
  • [45] Janjua, M. R. S. A., Mahmood, A., Ahmad, F. 2013. Solvent effects on nonlinear optical response of certain tetrammineruthenium (II) complexes of modified 1,10-phenanthrolines, Can. J. Chem., Vol. 91 (12), 1303-1309
  • [46] Mikkelsen, K. V.; Luo, Y.; Agren, H.; Jùrgensen, P. J. 1994. Solvent induced polarizabilities and hyperpolarizabilities of para-nitroaniline studied by reaction field linear response theory J. Chem. Phys., 100, 8240-8250.
  • [47] Bartkowiak, W.; Lipinski, J. 1998. Solvent effect on the nonlinear optical properties of para-nitroaniline studied by Langevin dipoles–Monte Carlo (LD/MC) approach, Comput. Chem. 22 (1), 31-37.
  • [48] Govindarajan, M., Karabacak, M. 2012. FT-IR, FT-Raman and UV spectral investigation; computed frequency estimation, analysis and electronic structure calculations on 1-nitronaphthalene, Spectrochimica Acta Part A, 85, 251–260.

Details

Primary Language English
Subjects Engineering
Journal Section Article
Authors

Sedat KANDEMİRLİ
University of Iowa
United States


İzzettin YILMAZER (Primary Author)
Erciyes Üniversitesi
0000-0001-8790-902X
Türkiye


Fatma KANDEMİRLİ
KASTAMONU UNIVERSITY
0000-0001-6097-2184
Türkiye


Murat SARAÇOĞLU
ERCIYES UNIVERSITY
0000-0003-4027-9643
Türkiye

Publication Date December 31, 2020
Published in Issue Year 2020, Volume 36, Issue 3

Cite

Bibtex @research article { erciyesfen680458, journal = {Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi}, issn = {1012-2354}, address = {ERCİYES ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ 38039 Kayseri, TÜRKİYE}, publisher = {Erciyes University}, year = {2020}, volume = {36}, pages = {443 - 455}, doi = {}, title = {Theoretical B3LYP Study on Electronic Structure of Contrast Agent Iopromide}, key = {cite}, author = {Kandemirli, Sedat and Yılmazer, İzzettin and Kandemirli, Fatma and Saraçoğlu, Murat} }
APA Kandemirli, S. , Yılmazer, İ. , Kandemirli, F. & Saraçoğlu, M. (2020). Theoretical B3LYP Study on Electronic Structure of Contrast Agent Iopromide . Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi , 36 (3) , 443-455 . Retrieved from https://dergipark.org.tr/en/pub/erciyesfen/issue/59314/680458
MLA Kandemirli, S. , Yılmazer, İ. , Kandemirli, F. , Saraçoğlu, M. "Theoretical B3LYP Study on Electronic Structure of Contrast Agent Iopromide" . Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36 (2020 ): 443-455 <https://dergipark.org.tr/en/pub/erciyesfen/issue/59314/680458>
Chicago Kandemirli, S. , Yılmazer, İ. , Kandemirli, F. , Saraçoğlu, M. "Theoretical B3LYP Study on Electronic Structure of Contrast Agent Iopromide". Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36 (2020 ): 443-455
RIS TY - JOUR T1 - Theoretical B3LYP Study on Electronic Structure of Contrast Agent Iopromide AU - Sedat Kandemirli , İzzettin Yılmazer , Fatma Kandemirli , Murat Saraçoğlu Y1 - 2020 PY - 2020 N1 - DO - T2 - Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi JF - Journal JO - JOR SP - 443 EP - 455 VL - 36 IS - 3 SN - 1012-2354- M3 - UR - Y2 - 2020 ER -
EndNote %0 Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi Theoretical B3LYP Study on Electronic Structure of Contrast Agent Iopromide %A Sedat Kandemirli , İzzettin Yılmazer , Fatma Kandemirli , Murat Saraçoğlu %T Theoretical B3LYP Study on Electronic Structure of Contrast Agent Iopromide %D 2020 %J Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi %P 1012-2354- %V 36 %N 3 %R %U
ISNAD Kandemirli, Sedat , Yılmazer, İzzettin , Kandemirli, Fatma , Saraçoğlu, Murat . "Theoretical B3LYP Study on Electronic Structure of Contrast Agent Iopromide". Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36 / 3 (December 2020): 443-455 .
AMA Kandemirli S. , Yılmazer İ. , Kandemirli F. , Saraçoğlu M. Theoretical B3LYP Study on Electronic Structure of Contrast Agent Iopromide. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020; 36(3): 443-455.
Vancouver Kandemirli S. , Yılmazer İ. , Kandemirli F. , Saraçoğlu M. Theoretical B3LYP Study on Electronic Structure of Contrast Agent Iopromide. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020; 36(3): 443-455.
IEEE S. Kandemirli , İ. Yılmazer , F. Kandemirli and M. Saraçoğlu , "Theoretical B3LYP Study on Electronic Structure of Contrast Agent Iopromide", Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 36, no. 3, pp. 443-455, Dec. 2021