Research Article
BibTex RIS Cite

Modeling and investigation of the wind turbine integrated with fresh water production and vapour compression refrigeration systems in terms of thermodynamic perspective.

Year 2020, Volume: 36 Issue: 3, 364 - 373, 31.12.2020

Abstract

In this study, a new wind turbine supported power, heating, cooling and fresh water generation plant is introduced, and thermodynamic performance evaluation is conducted. The examined system includes wind turbines, vapour compression cooling (VCC) system, which operates R744 refrigerants, and reverse osmosis (RO) desalination system. Also, the key objective of this paper is to meet the electricity need of the VCC's compressor and the RO's pumps, with the wind turbines and then to send the remaining electricity to the place of use. The overall thermodynamic analyses are performed with the Engineering Equation Solver (EES) program. The consequences display that the total energetic and exergetic efficiency are computed as 0.6621 and 0.61, respectively. In addition, fresh water production capacity of the suggested system is 60 kg /s.

References

  • 2] S. Ozlu, I. Dincer, Development and analysis of a solar and wind energy based multigeneration system, Sol. Energy. 122 (2015) 1279–1295. doi:10.1016/j.solener.2015.10.035.
  • [3] M. Ozturk, I. Dincer, Thermodynamic analysis of a solar-based multi-generation system with hydrogen production, Appl. Therm. Eng. 51 (2013) 1235–1244. doi:10.1016/j.applthermaleng.2012.11.042.
  • [4] I. Dincer, C. Zamfirescu, Renewable-energy-based multigeneration systems, Int. J. Energy Res. 36 (2012) 1403–1415. doi:10.1002/er.2882.
  • [5] M. Luqman, Y. Bicer, T. Al-Ansari, Thermodynamic analysis of an oxy-hydrogen combustor supported solar and wind energy-based sustainable polygeneration system for remote locations., Int. J. Hydrogen Energy. (2019). doi:10.1016/J.IJHYDENE.2018.12.191.
  • [6] N. Sezer, M. Koç, Development and performance assessment of a new integrated solar, wind, and osmotic power system for multigeneration, based on thermodynamic principles, (2019). doi:10.1016/j.enconman.2019.03.051.
  • [7] F. Sorgulu, I. Dincer, A renewable source based hydrogen energy system for residential applications, Int. J. Hydrogen Energy. 43 (2018) 5842–5851. doi:10.1016/j.ijhydene.2017.10.101.
  • [8] Y. Devrim, L. Bilir, Performance investigation of a wind turbine–solar photovoltaic panels–fuel cell hybrid system installed at İncek region – Ankara, Turkey, Energy Convers. Manag. 126 (2016) 759–766. doi:10.1016/j.enconman.2016.08.062.
  • [9] N. Sezer, Y. Biçer, M. Koç, Design and thermodynamic analysis of an integrated concentrated solar power (csp) & concentrated photovoltaic/thermal (cpv/t) and wind to thermal energy conversion (wtec) system for multigeneration, 7th Glob. Conf. Glob. Warm. (2018) 1103–1111. doi:10.1002/er.4456.
  • [10] F. Yilmaz, Thermodynamic performance evaluation of a novel solar energy based multigeneration system, Appl. Therm. Eng. 143 (2018) 429–437. doi:10.1016/j.applthermaleng.2018.07.125.
  • [11] Y. Bicer, I. Dincer, Analysis and performance evaluation of a renewable energy based multigeneration system, Energy. 94 (2016) 623–632. doi:10.1016/j.energy.2015.10.142.
  • [12] A. Khosravi, R.N.N. Koury, L. Machado, J.J.G. Pabon, Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system, Energy. 148 (2018) 1087–1102. doi:10.1016/J.ENERGY.2018.02.008.
  • [13] F. Khalid, I. Dincer, M.A. Rosen, Techno-economic assessment of a renewable energy based integrated multigeneration system for green buildings, (2016). doi:10.1016/j.applthermaleng.2016.01.055.
  • [14] M.M. Keshtkar, A.G. Khani, Exergoeconomic analysis and optimization of a hybrid system based on multi-objective generation system in Iran: a case study, Renew. Energy Focus. 27 (2018) 1–13. doi:10.1016/j.ref.2018.07.008.
  • [15] Y.E. Yuksel, M. Ozturk, I. Dincer, Thermodynamic performance assessment of a novel environmentally-benign solar energy based integrated system, Energy Convers. Manag. 119 (2016) 109–120. doi:10.1016/j.enconman.2016.04.040.
  • [16] H. Ishaq, I. Dincer, G.F. Naterer, New trigeneration system integrated with desalination and industrial waste heat recovery for hydrogen production, Appl. Therm. Eng. 142 (2018) 767–778. doi:10.1016/J.APPLTHERMALENG.2018.07.019.
  • [17] S. Ghosh, I. Dincer, Development and analysis of a new integrated solar-wind-geothermal energy system, Sol. Energy. 107 (2014) 728–745. doi:10.1016/j.solener.2014.06.006.
  • [18] I. Dincer, M. Rosen, EXERGY : Energy, Environment and Sustainable Development., Elsevier Science, 2012.
  • [19] T.J. (Tadeusz J. Kotas, The exergy method of thermal plant analysis, Butterworths, 1985.
  • [20] Y.A. Çengel, M.A. Boles, Thermodynamics : an engineering approach, 8th ed. Mc, McGraw-Hil;2015, n.d. https://doi.org/10.1017/%0ACBO9781107415324.004. (accessed February 19, 2019).
  • [21] H. Ishaq, I. Dincer, G.F. Naterer, Performance investigation of an integrated wind energy system for co-generation of power and hydrogen, Int. J. Hydrogen Energy. 43 (2018) 9153–9164. doi:10.1016/j.ijhydene.2018.03.139.
  • [22] F. Khalid, I. Dincer, M.A. Rosen, Analysis and assessment of an integrated hydrogen energy system, Int. J. Hydrogen Energy. 41 (2016) 7960–7967. doi:10.1016/j.ijhydene.2015.12.221.

Rüzgar Türbini Entegre Sisteminin Güç, Isıtma, Soğutma Ve Temiz Su Üretimi İçin Termodinamik Açıdan Modellenmesi Ve İncelenmesi

Year 2020, Volume: 36 Issue: 3, 364 - 373, 31.12.2020

Abstract

Bu çalışmada, rüzgar türbini destekli güç, ısıtma, soğutma ve tatlı su üretim tesisi kombine bir sistemi önerilmiş ve termodinamik performans değerlendirmesi yapılmıştır. Önerilen bu çalışma, rüzgâr türbini, R744 soğutkanlı buhar sıkıştırmalı soğutma sistemi ve ters ozmos alt sistemlerinden oluşmaktadır. Ayrıca bu çalışmanın temel amacı, buhar sıkıştırmalı soğutma sisteminin kompresörü ve ters su üretim sisteminde ki pompaların elektriksel güç ihtiyaçları rüzgar türbininden elde edilen güç ile karşılanmasıdır. Tüm sistemin termodinamik hesaplamalarında EES adlı program kullanılmıştır. Önerilen sistemin, genel enerji ve ekserji verimi sırasıyla 0.66 ve 0.61 olarak hesaplanmıştır. Ayrıca, önerilen temiz su üretim sistemi ile 60 kg/s temiz su üretimi gerçekleşmiştir.

References

  • 2] S. Ozlu, I. Dincer, Development and analysis of a solar and wind energy based multigeneration system, Sol. Energy. 122 (2015) 1279–1295. doi:10.1016/j.solener.2015.10.035.
  • [3] M. Ozturk, I. Dincer, Thermodynamic analysis of a solar-based multi-generation system with hydrogen production, Appl. Therm. Eng. 51 (2013) 1235–1244. doi:10.1016/j.applthermaleng.2012.11.042.
  • [4] I. Dincer, C. Zamfirescu, Renewable-energy-based multigeneration systems, Int. J. Energy Res. 36 (2012) 1403–1415. doi:10.1002/er.2882.
  • [5] M. Luqman, Y. Bicer, T. Al-Ansari, Thermodynamic analysis of an oxy-hydrogen combustor supported solar and wind energy-based sustainable polygeneration system for remote locations., Int. J. Hydrogen Energy. (2019). doi:10.1016/J.IJHYDENE.2018.12.191.
  • [6] N. Sezer, M. Koç, Development and performance assessment of a new integrated solar, wind, and osmotic power system for multigeneration, based on thermodynamic principles, (2019). doi:10.1016/j.enconman.2019.03.051.
  • [7] F. Sorgulu, I. Dincer, A renewable source based hydrogen energy system for residential applications, Int. J. Hydrogen Energy. 43 (2018) 5842–5851. doi:10.1016/j.ijhydene.2017.10.101.
  • [8] Y. Devrim, L. Bilir, Performance investigation of a wind turbine–solar photovoltaic panels–fuel cell hybrid system installed at İncek region – Ankara, Turkey, Energy Convers. Manag. 126 (2016) 759–766. doi:10.1016/j.enconman.2016.08.062.
  • [9] N. Sezer, Y. Biçer, M. Koç, Design and thermodynamic analysis of an integrated concentrated solar power (csp) & concentrated photovoltaic/thermal (cpv/t) and wind to thermal energy conversion (wtec) system for multigeneration, 7th Glob. Conf. Glob. Warm. (2018) 1103–1111. doi:10.1002/er.4456.
  • [10] F. Yilmaz, Thermodynamic performance evaluation of a novel solar energy based multigeneration system, Appl. Therm. Eng. 143 (2018) 429–437. doi:10.1016/j.applthermaleng.2018.07.125.
  • [11] Y. Bicer, I. Dincer, Analysis and performance evaluation of a renewable energy based multigeneration system, Energy. 94 (2016) 623–632. doi:10.1016/j.energy.2015.10.142.
  • [12] A. Khosravi, R.N.N. Koury, L. Machado, J.J.G. Pabon, Energy, exergy and economic analysis of a hybrid renewable energy with hydrogen storage system, Energy. 148 (2018) 1087–1102. doi:10.1016/J.ENERGY.2018.02.008.
  • [13] F. Khalid, I. Dincer, M.A. Rosen, Techno-economic assessment of a renewable energy based integrated multigeneration system for green buildings, (2016). doi:10.1016/j.applthermaleng.2016.01.055.
  • [14] M.M. Keshtkar, A.G. Khani, Exergoeconomic analysis and optimization of a hybrid system based on multi-objective generation system in Iran: a case study, Renew. Energy Focus. 27 (2018) 1–13. doi:10.1016/j.ref.2018.07.008.
  • [15] Y.E. Yuksel, M. Ozturk, I. Dincer, Thermodynamic performance assessment of a novel environmentally-benign solar energy based integrated system, Energy Convers. Manag. 119 (2016) 109–120. doi:10.1016/j.enconman.2016.04.040.
  • [16] H. Ishaq, I. Dincer, G.F. Naterer, New trigeneration system integrated with desalination and industrial waste heat recovery for hydrogen production, Appl. Therm. Eng. 142 (2018) 767–778. doi:10.1016/J.APPLTHERMALENG.2018.07.019.
  • [17] S. Ghosh, I. Dincer, Development and analysis of a new integrated solar-wind-geothermal energy system, Sol. Energy. 107 (2014) 728–745. doi:10.1016/j.solener.2014.06.006.
  • [18] I. Dincer, M. Rosen, EXERGY : Energy, Environment and Sustainable Development., Elsevier Science, 2012.
  • [19] T.J. (Tadeusz J. Kotas, The exergy method of thermal plant analysis, Butterworths, 1985.
  • [20] Y.A. Çengel, M.A. Boles, Thermodynamics : an engineering approach, 8th ed. Mc, McGraw-Hil;2015, n.d. https://doi.org/10.1017/%0ACBO9781107415324.004. (accessed February 19, 2019).
  • [21] H. Ishaq, I. Dincer, G.F. Naterer, Performance investigation of an integrated wind energy system for co-generation of power and hydrogen, Int. J. Hydrogen Energy. 43 (2018) 9153–9164. doi:10.1016/j.ijhydene.2018.03.139.
  • [22] F. Khalid, I. Dincer, M.A. Rosen, Analysis and assessment of an integrated hydrogen energy system, Int. J. Hydrogen Energy. 41 (2016) 7960–7967. doi:10.1016/j.ijhydene.2015.12.221.
There are 21 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Article
Authors

Fatih Yılmaz

Publication Date December 31, 2020
Published in Issue Year 2020 Volume: 36 Issue: 3

Cite

APA Yılmaz, F. (2020). Modeling and investigation of the wind turbine integrated with fresh water production and vapour compression refrigeration systems in terms of thermodynamic perspective. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 36(3), 364-373.
AMA Yılmaz F. Modeling and investigation of the wind turbine integrated with fresh water production and vapour compression refrigeration systems in terms of thermodynamic perspective. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. December 2020;36(3):364-373.
Chicago Yılmaz, Fatih. “Modeling and Investigation of the Wind Turbine Integrated With Fresh Water Production and Vapour Compression Refrigeration Systems in Terms of Thermodynamic Perspective”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36, no. 3 (December 2020): 364-73.
EndNote Yılmaz F (December 1, 2020) Modeling and investigation of the wind turbine integrated with fresh water production and vapour compression refrigeration systems in terms of thermodynamic perspective. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36 3 364–373.
IEEE F. Yılmaz, “Modeling and investigation of the wind turbine integrated with fresh water production and vapour compression refrigeration systems in terms of thermodynamic perspective”., Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 36, no. 3, pp. 364–373, 2020.
ISNAD Yılmaz, Fatih. “Modeling and Investigation of the Wind Turbine Integrated With Fresh Water Production and Vapour Compression Refrigeration Systems in Terms of Thermodynamic Perspective”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 36/3 (December 2020), 364-373.
JAMA Yılmaz F. Modeling and investigation of the wind turbine integrated with fresh water production and vapour compression refrigeration systems in terms of thermodynamic perspective. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020;36:364–373.
MLA Yılmaz, Fatih. “Modeling and Investigation of the Wind Turbine Integrated With Fresh Water Production and Vapour Compression Refrigeration Systems in Terms of Thermodynamic Perspective”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 36, no. 3, 2020, pp. 364-73.
Vancouver Yılmaz F. Modeling and investigation of the wind turbine integrated with fresh water production and vapour compression refrigeration systems in terms of thermodynamic perspective. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2020;36(3):364-73.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.