Research Article
BibTex RIS Cite

Elektromanyetik Alan Etkili Fitzhugh-Nagumo Nöron Modeline Rotasyon Kontrol İşleminin Uygulanması

Year 2022, Volume: 38 Issue: 2, 242 - 249, 23.08.2022

Abstract

Biyolojik nöron modellerinin kararlılık analizlerinin yapılması ve dinamik davranışlarının kontrolü üzerine literatürde pek çok çalışma mevcuttur. Son zamanlarda biyolojik sistemler, lazer sistemleri, kaotik sistemler ve nöral sistemler gibi doğrusal olmayan tanımlamalara sahip yapılarda, rotasyonel dinamikler gözlemlenmektedir. Bu rotasyonel dinamiklerin modellenmesi üzerine çalışmalar yapılmaktadır. Burada da elektromanyetik alan etkili Fitzhugh-Nagumo nöron modelinin hücre zarı potansiyeli ve transmembrane akımlarının oluşturduğu çekerlerin rotasyon kontrolünün Euler Rotasyon Teoremi kullanılarak yapılması amaçlanmaktadır. Elektromanyetik alan etkili Fitzhugh-Nagumo nöron modeli elektromanyetik alan tanımlamasının ilave bir durum değişkeni olarak tanımlanması ile geliştirilen bir tanımlamaya sahip olması yönüyle diğer modellerden farklılaşmaktadır. Bu modeldeki harici uyaran bir sinüzoidal kaynak şeklinde seçilerek, kaynağın genliğinin nöron modeli dinamiklerine etkisi; dallanma diyagramından, zaman domeni gösterimlerinden ve Lyapunov üstellerinden yararlanılarak gözlemlenecektir. Rotasyon kontrol işleminin başarım sonuçları, modeldeki harici akım kaynağının farklı genlik değerleri için kaydedilen nümerik simülasyon sonuçları ile paylaşılacaktır.

References

  • [1] Chua, L. 1971. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18 (5), 507-519.
  • [2] Lv, M., Wang, C., Ren, G., Ma, J., Song, X. 2016. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 85(3), 1479-1490.
  • [3] Lv, M., Ma, J. 2016. Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing, 205, 375-381.
  • [4] Xu, Q., Song, Z., Bao, H., Chen, M., Bao, B. 2018. Two-neuron-based non-autonomous memristive Hopfield neural network: Numerical analyses and hardware experiments. AEU-International Journal of Electronics and Communications, 96, 66-74.
  • [5] Hodgkin, A.L., Andrew F.H. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500.
  • [6] FitzHugh, R. 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophysical journal, 1(6), 445-466.
  • [7] Hindmarsh, J. L., Rose, R. M. 1984. A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal society of London. Series B. Biological sciences, 221(1222), 87-102.
  • [8] Wu, F., Wang, C., Xu, Y., Ma, J. 2016. Model of electrical activity in cardiac tissue under electromagnetic induction. Scientific reports, 6(1), 1-12.
  • [9] Ma, J., Wu, F., Hayat, T., Zhou, P., Tang, J. 2017. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media. Physica A: Statistical Mechanics and its Applications, 486, 508-516.
  • [10] Bao, B., Hu, A., Bao, H., Xu, Q., Chen, M., Wu, H. 2018. Three-dimensional memristive Hindmarsh–Rose neuron model with hidden coexisting asymmetric behaviors. Complexity, 2018.
  • [11] Bao, H., Hu, A., Liu, W., Bao, B. 2019. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Transactions on Neural Networks and Learning Systems, 31(2), 502-511.
  • [12] Lin, H., Wang, C., Sun, Y., Yao, W. 2020. Firing multistability in a locally active memristive neuron model. Nonlinear Dynamics, 100(4), 3667-3683.
  • [13] Bao, B., Zhu, Y., Ma, J., Bao, H., Wu, H., Chen, M. 2021. Memristive neuron model with an adapting synapse and its hardware experiments. Science China Technological Sciences, 64(5), 1107-1117.
  • [14] Ma, J., Zhang, G., Hayat, T., Ren, G. 2019. Model electrical activity of neuron under electric field. Nonlinear dynamics, 95(2), 1585-1598.
  • [15] Kim, Y. 2010. Identification of dynamical states in stimulated Izhikevich neuron models by using a 0-1 test. Journal of the Korean Physical Society, 57(6), 1363-1368.
  • [16] Bizzarri, F., Brambilla, A., Storti Gajani, G. 2013. Lyapunov exponents computation for hybrid neurons. Journal of computational neuroscience, 35(2), 201-212.
  • [17] Çimen, Z., Korkmaz, N., Altuncu, Y., Kılıç, R. 2020. Evaluating the effectiveness of several synchronization control methods applying to the electrically and the chemically coupled hindmarsh-rose neurons. Biosystems, 198, 104284.
  • [18] Thottil, S. K., Ignatius, R. P. 2017. Nonlinear feedback coupling in Hindmarsh–Rose neurons. Nonlinear Dynamics, 87(3), 1879-1899.
  • [19] Karaca, Z., Korkmaz, N., Altuncu, Y., Kılıç, R. 2021. An extensive FPGA-based realization study about the Izhikevich neurons and their bio-inspired applications. Nonlinear Dynamics, 105(4), 3529-3549.
  • [20] Kim, M. Y., Roy, R., Aron, J. L., Carr, T. W., Schwartz, I. B. 2005. Scaling behavior of laser population dynamics with time-delayed coupling: theory and experiment. Physical review letters, 94(8), 088101.
  • [21] Prasad, A., Dana, S. K., Karnatak, R., Kurths, J., Blasius, B., & Ramaswamy, R. 2008. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(2), 023111.
  • [22] Korkmaz, N. 2021. A Phase Control Method for the Dynamical Attractor of the HR Neuron Model: The Rotation-Transition Process and Its Experimental Realization. Neural Processing Letters, 53(6), 3877-3892.
  • [23] Arfken G.B., Weber H.J. 1999. Mathematical methods for physicists, 6th edn. Elsevier Academic Press, Cambridge, 1205s. ISBN 0-12-088584-0

The Application of the Rotation Control Process to the Electromagnetic Field-Effect Fitzhugh-Nagumo Neuron Model

Year 2022, Volume: 38 Issue: 2, 242 - 249, 23.08.2022

Abstract

There are many studies about the stability analysis of the biological neuron models and the control of their dynamic behavior in the literature. Recently, the rotational dynamics have been observed in structures, which have nonlinear definitions, such as biological systems, laser systems, chaotic systems and neural systems. Several studies are carried out about the modeling of these rotational dynamics. Here, it is aimed to control the rotation of the attractors, which are formed by the membrane potential and the transmembrane currents of the electromagnetic field-effect Fitzhugh-Nagumo neuron model and it is used the Euler Rotation Theorem. The electromagnetic field-effect Fitzhugh-Nagumo neuron model differs from other models with its following aspect. This model has an additional state variable that describes the electromagnetic field effect. The effects of the amplitude of the external stimulus on the dynamics of this neuron model are observed by utilizing the bifurcation diagram, time domain representations and Lyapunov exponents and this external stimulus is selected as a sinusoidal source. The performance results of the rotation control process are shared with the numerical simulation results that are recorded for the different amplitude values of the external current source in this model.

References

  • [1] Chua, L. 1971. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18 (5), 507-519.
  • [2] Lv, M., Wang, C., Ren, G., Ma, J., Song, X. 2016. Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 85(3), 1479-1490.
  • [3] Lv, M., Ma, J. 2016. Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing, 205, 375-381.
  • [4] Xu, Q., Song, Z., Bao, H., Chen, M., Bao, B. 2018. Two-neuron-based non-autonomous memristive Hopfield neural network: Numerical analyses and hardware experiments. AEU-International Journal of Electronics and Communications, 96, 66-74.
  • [5] Hodgkin, A.L., Andrew F.H. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology, 117(4), 500.
  • [6] FitzHugh, R. 1961. Impulses and physiological states in theoretical models of nerve membrane. Biophysical journal, 1(6), 445-466.
  • [7] Hindmarsh, J. L., Rose, R. M. 1984. A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal society of London. Series B. Biological sciences, 221(1222), 87-102.
  • [8] Wu, F., Wang, C., Xu, Y., Ma, J. 2016. Model of electrical activity in cardiac tissue under electromagnetic induction. Scientific reports, 6(1), 1-12.
  • [9] Ma, J., Wu, F., Hayat, T., Zhou, P., Tang, J. 2017. Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media. Physica A: Statistical Mechanics and its Applications, 486, 508-516.
  • [10] Bao, B., Hu, A., Bao, H., Xu, Q., Chen, M., Wu, H. 2018. Three-dimensional memristive Hindmarsh–Rose neuron model with hidden coexisting asymmetric behaviors. Complexity, 2018.
  • [11] Bao, H., Hu, A., Liu, W., Bao, B. 2019. Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Transactions on Neural Networks and Learning Systems, 31(2), 502-511.
  • [12] Lin, H., Wang, C., Sun, Y., Yao, W. 2020. Firing multistability in a locally active memristive neuron model. Nonlinear Dynamics, 100(4), 3667-3683.
  • [13] Bao, B., Zhu, Y., Ma, J., Bao, H., Wu, H., Chen, M. 2021. Memristive neuron model with an adapting synapse and its hardware experiments. Science China Technological Sciences, 64(5), 1107-1117.
  • [14] Ma, J., Zhang, G., Hayat, T., Ren, G. 2019. Model electrical activity of neuron under electric field. Nonlinear dynamics, 95(2), 1585-1598.
  • [15] Kim, Y. 2010. Identification of dynamical states in stimulated Izhikevich neuron models by using a 0-1 test. Journal of the Korean Physical Society, 57(6), 1363-1368.
  • [16] Bizzarri, F., Brambilla, A., Storti Gajani, G. 2013. Lyapunov exponents computation for hybrid neurons. Journal of computational neuroscience, 35(2), 201-212.
  • [17] Çimen, Z., Korkmaz, N., Altuncu, Y., Kılıç, R. 2020. Evaluating the effectiveness of several synchronization control methods applying to the electrically and the chemically coupled hindmarsh-rose neurons. Biosystems, 198, 104284.
  • [18] Thottil, S. K., Ignatius, R. P. 2017. Nonlinear feedback coupling in Hindmarsh–Rose neurons. Nonlinear Dynamics, 87(3), 1879-1899.
  • [19] Karaca, Z., Korkmaz, N., Altuncu, Y., Kılıç, R. 2021. An extensive FPGA-based realization study about the Izhikevich neurons and their bio-inspired applications. Nonlinear Dynamics, 105(4), 3529-3549.
  • [20] Kim, M. Y., Roy, R., Aron, J. L., Carr, T. W., Schwartz, I. B. 2005. Scaling behavior of laser population dynamics with time-delayed coupling: theory and experiment. Physical review letters, 94(8), 088101.
  • [21] Prasad, A., Dana, S. K., Karnatak, R., Kurths, J., Blasius, B., & Ramaswamy, R. 2008. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18(2), 023111.
  • [22] Korkmaz, N. 2021. A Phase Control Method for the Dynamical Attractor of the HR Neuron Model: The Rotation-Transition Process and Its Experimental Realization. Neural Processing Letters, 53(6), 3877-3892.
  • [23] Arfken G.B., Weber H.J. 1999. Mathematical methods for physicists, 6th edn. Elsevier Academic Press, Cambridge, 1205s. ISBN 0-12-088584-0
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Nimet Korkmaz 0000-0002-7419-1538

Bekir Şıvga 0000-0002-8373-2498

Early Pub Date August 23, 2022
Publication Date August 23, 2022
Published in Issue Year 2022 Volume: 38 Issue: 2

Cite

APA Korkmaz, N., & Şıvga, B. (2022). Elektromanyetik Alan Etkili Fitzhugh-Nagumo Nöron Modeline Rotasyon Kontrol İşleminin Uygulanması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 38(2), 242-249.
AMA Korkmaz N, Şıvga B. Elektromanyetik Alan Etkili Fitzhugh-Nagumo Nöron Modeline Rotasyon Kontrol İşleminin Uygulanması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. August 2022;38(2):242-249.
Chicago Korkmaz, Nimet, and Bekir Şıvga. “Elektromanyetik Alan Etkili Fitzhugh-Nagumo Nöron Modeline Rotasyon Kontrol İşleminin Uygulanması”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38, no. 2 (August 2022): 242-49.
EndNote Korkmaz N, Şıvga B (August 1, 2022) Elektromanyetik Alan Etkili Fitzhugh-Nagumo Nöron Modeline Rotasyon Kontrol İşleminin Uygulanması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38 2 242–249.
IEEE N. Korkmaz and B. Şıvga, “Elektromanyetik Alan Etkili Fitzhugh-Nagumo Nöron Modeline Rotasyon Kontrol İşleminin Uygulanması”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 38, no. 2, pp. 242–249, 2022.
ISNAD Korkmaz, Nimet - Şıvga, Bekir. “Elektromanyetik Alan Etkili Fitzhugh-Nagumo Nöron Modeline Rotasyon Kontrol İşleminin Uygulanması”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 38/2 (August 2022), 242-249.
JAMA Korkmaz N, Şıvga B. Elektromanyetik Alan Etkili Fitzhugh-Nagumo Nöron Modeline Rotasyon Kontrol İşleminin Uygulanması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2022;38:242–249.
MLA Korkmaz, Nimet and Bekir Şıvga. “Elektromanyetik Alan Etkili Fitzhugh-Nagumo Nöron Modeline Rotasyon Kontrol İşleminin Uygulanması”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, vol. 38, no. 2, 2022, pp. 242-9.
Vancouver Korkmaz N, Şıvga B. Elektromanyetik Alan Etkili Fitzhugh-Nagumo Nöron Modeline Rotasyon Kontrol İşleminin Uygulanması. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2022;38(2):242-9.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.