Research Article
BibTex RIS Cite

The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation

Year 2019, , 211 - 221, 31.12.2019
https://doi.org/10.35208/ert.597731

Abstract

It is shown how the
deactivation of a diesel SCR (Selective Catalytic Reduction) catalyst by
compounds in the exhaust gases influences the kinetics of the catalyst. Results
are given for the fresh (4.56 % V
2O5/TiO2)
catalyst and the ones used in the rig for 890 h and 2299 h. The reactions of
700 ppm NH
3 and 2 % O2 in Helium yielded N2, N2O,
and NO at increasing temperatures. Simulations were performed with COMSOL
Multiphysics using a 3-D model of the catalyst system. The experimental values
of the products N
2, N2O, and NO were very nicely fitted
by the kinetic model used. All three ammonia oxidation reaction rates were of
the first order in the concentration of NH
3. A preliminary study
using non-isothermal conditions showed the maximal temperature increase to be
0.15 K. Thus, further simulations were done with an isothermal model. The
deactivation reduces the pre-exponential factors and the activation energies
for the formation of N
2, N2O, and NO. The formation of N2
is not substantially influenced by deactivation. The changes in the kinetics of
the catalytic NH
3 oxidation by deactivation is reported for the
first time in the present study.

Supporting Institution

Department of Chemical Engineering

References

  • [1] Konstandopoulos A, Zarvalis D, Chasapidis L, Deloglou L, Vlachos N, Kotbra A, Anderson G (2017) SAE Int. J. Engines 10 (4): 1653.
  • [2] Jung H, Kittelson DB, Zachariah MR, (2003) SAE Technical Paper 2003-01-3179.
  • [3] Odenbrand CUI, Catalysis Letters, 2019, DOI 10.1007/s10562-019-02892-7
  • [4] Koebel M, Elsener M (1998) Chem. Eng. Sci. 53 (4): 657.
  • [5] Ozkan US, Cai Y, Kuthekar MW, Zhang L (1993) J. Catal. 142:182.
  • [6] Ozkan US, Cai Y, Kuthekar MW (1994) J. Catal. 149:375.
  • [7] Duffy BL, Curry-Hyde HE, Cant NW, Nelson PF (1994) J. Phys. Chem. 98: 7153.
  • [8] Efstathiou AM, Fliatoura K (1995) Appl. Catal. B: Environ. 6:35.
  • [9] Yates M, Martín JA, Martín-Luengo MA, Suárez S, Blanco J (2005) Catal. Today 107-108: 120.
  • [10] Djerad S, Crocoll M, Kureti S, Tifouti L, Weisweler W (2006) Catal. Today 113: 208.
  • [11] Lietti L, Nova I, Forzatti P (2000) Topics in Catalysis 11/12:111.
  • [12] Odenbrand CUI (2017) Top. Catal. 60: 1317.
  • [13] Odenbrand CUI (2018) Appl. Catal B: Environ.234: 365.
  • [14] Roduit B, Wokaun A, Baiker A (1998) Ind. Eng. Chem. Res. 37: 4577.
  • [15] Koebel M, Elsener M (1998) Chem. Eng. Sci. 53(4): 657.
  • [16] Chen C-T, Tan W-L (2012) J. of the Taiwan Institute of Chemical Engineers 43:409.
  • [17] Nahavandi M (2015) Brazilian J. of Chem. Eng. 32(4): 875.
  • [18] Yun BK, Kim MY (2013) Appl. Thermal Engineering 50:152.
  • [19] Scheuer A, Hauptmann W, Drochner A, Gieshoff J, Vogel H, Votsmeier M (2012) Appl. Catal. B: Environ. 111-112: 445.
  • [20] http://www.engineersedge.com/heat_transfer/convective_heat_transfer_ coefficients 13378.
  • [21] Brandin JGM, Odenbrand CUI (2017) Topic. Catal. 60: 1306.
  • [22] Brandin JGM, Odenbrand CUI (2018) Catal. Lett. 148(1): 312.
  • [23] Vaimakis TC, Pomonis PJ, Sdoukos AT (1990) Thermochimica Acta 168:103.
  • [24] Metkar PS, Balakotaiah V, Harold MP (2011) Chem. Eng. Sci. 66:5192.
  • [25] Salehi S, Moghaddam MA, Sahebjamee N (2016) International Journal of Engineering 29(9):1183.
  • [26] Om J, Ji P, Wu W (2015) Asia-Pacific Energy Equipment Engineering Research Conference AP3ER 2015:56.
  • [27] Schaub G, Unruh D, Wang J, Turek T (2003) Chemical Engineering and Processing 42:365.
  • [28] Millo F, Rafigh M, Fino D, Micelli P (2017) Fuel 198:183.
Year 2019, , 211 - 221, 31.12.2019
https://doi.org/10.35208/ert.597731

Abstract

References

  • [1] Konstandopoulos A, Zarvalis D, Chasapidis L, Deloglou L, Vlachos N, Kotbra A, Anderson G (2017) SAE Int. J. Engines 10 (4): 1653.
  • [2] Jung H, Kittelson DB, Zachariah MR, (2003) SAE Technical Paper 2003-01-3179.
  • [3] Odenbrand CUI, Catalysis Letters, 2019, DOI 10.1007/s10562-019-02892-7
  • [4] Koebel M, Elsener M (1998) Chem. Eng. Sci. 53 (4): 657.
  • [5] Ozkan US, Cai Y, Kuthekar MW, Zhang L (1993) J. Catal. 142:182.
  • [6] Ozkan US, Cai Y, Kuthekar MW (1994) J. Catal. 149:375.
  • [7] Duffy BL, Curry-Hyde HE, Cant NW, Nelson PF (1994) J. Phys. Chem. 98: 7153.
  • [8] Efstathiou AM, Fliatoura K (1995) Appl. Catal. B: Environ. 6:35.
  • [9] Yates M, Martín JA, Martín-Luengo MA, Suárez S, Blanco J (2005) Catal. Today 107-108: 120.
  • [10] Djerad S, Crocoll M, Kureti S, Tifouti L, Weisweler W (2006) Catal. Today 113: 208.
  • [11] Lietti L, Nova I, Forzatti P (2000) Topics in Catalysis 11/12:111.
  • [12] Odenbrand CUI (2017) Top. Catal. 60: 1317.
  • [13] Odenbrand CUI (2018) Appl. Catal B: Environ.234: 365.
  • [14] Roduit B, Wokaun A, Baiker A (1998) Ind. Eng. Chem. Res. 37: 4577.
  • [15] Koebel M, Elsener M (1998) Chem. Eng. Sci. 53(4): 657.
  • [16] Chen C-T, Tan W-L (2012) J. of the Taiwan Institute of Chemical Engineers 43:409.
  • [17] Nahavandi M (2015) Brazilian J. of Chem. Eng. 32(4): 875.
  • [18] Yun BK, Kim MY (2013) Appl. Thermal Engineering 50:152.
  • [19] Scheuer A, Hauptmann W, Drochner A, Gieshoff J, Vogel H, Votsmeier M (2012) Appl. Catal. B: Environ. 111-112: 445.
  • [20] http://www.engineersedge.com/heat_transfer/convective_heat_transfer_ coefficients 13378.
  • [21] Brandin JGM, Odenbrand CUI (2017) Topic. Catal. 60: 1306.
  • [22] Brandin JGM, Odenbrand CUI (2018) Catal. Lett. 148(1): 312.
  • [23] Vaimakis TC, Pomonis PJ, Sdoukos AT (1990) Thermochimica Acta 168:103.
  • [24] Metkar PS, Balakotaiah V, Harold MP (2011) Chem. Eng. Sci. 66:5192.
  • [25] Salehi S, Moghaddam MA, Sahebjamee N (2016) International Journal of Engineering 29(9):1183.
  • [26] Om J, Ji P, Wu W (2015) Asia-Pacific Energy Equipment Engineering Research Conference AP3ER 2015:56.
  • [27] Schaub G, Unruh D, Wang J, Turek T (2003) Chemical Engineering and Processing 42:365.
  • [28] Millo F, Rafigh M, Fino D, Micelli P (2017) Fuel 198:183.
There are 28 citations in total.

Details

Primary Language English
Subjects Environmental Engineering
Journal Section Research Articles
Authors

İngemar Odenbrand 0000-0002-4956-5681

Publication Date December 31, 2019
Submission Date July 29, 2019
Acceptance Date December 12, 2019
Published in Issue Year 2019

Cite

APA Odenbrand, İ. (2019). The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation. Environmental Research and Technology, 2(4), 211-221. https://doi.org/10.35208/ert.597731
AMA Odenbrand İ. The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation. ERT. December 2019;2(4):211-221. doi:10.35208/ert.597731
Chicago Odenbrand, İngemar. “The Kinetics of the Oxidation of Ammonia on a V2O5/TiO2 SCR Catalyst Deactivated in an Engine Rig. Part I. Determination of Kinetic Parameters by Simulation”. Environmental Research and Technology 2, no. 4 (December 2019): 211-21. https://doi.org/10.35208/ert.597731.
EndNote Odenbrand İ (December 1, 2019) The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation. Environmental Research and Technology 2 4 211–221.
IEEE İ. Odenbrand, “The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation”, ERT, vol. 2, no. 4, pp. 211–221, 2019, doi: 10.35208/ert.597731.
ISNAD Odenbrand, İngemar. “The Kinetics of the Oxidation of Ammonia on a V2O5/TiO2 SCR Catalyst Deactivated in an Engine Rig. Part I. Determination of Kinetic Parameters by Simulation”. Environmental Research and Technology 2/4 (December 2019), 211-221. https://doi.org/10.35208/ert.597731.
JAMA Odenbrand İ. The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation. ERT. 2019;2:211–221.
MLA Odenbrand, İngemar. “The Kinetics of the Oxidation of Ammonia on a V2O5/TiO2 SCR Catalyst Deactivated in an Engine Rig. Part I. Determination of Kinetic Parameters by Simulation”. Environmental Research and Technology, vol. 2, no. 4, 2019, pp. 211-2, doi:10.35208/ert.597731.
Vancouver Odenbrand İ. The kinetics of the oxidation of ammonia on a V2O5/TiO2 SCR catalyst deactivated in an engine rig. Part I. Determination of kinetic parameters by simulation. ERT. 2019;2(4):211-2.