Research Article
BibTex RIS Cite
Year 2018, Volume: 1 Issue: 1, 4 - 13, 01.01.2018

Abstract

References

  • [1]. E.W. Repa. (2003), “Bioreactor landfills: a viable technology”, National Solid Wastes Management Association NSWMA, Washington DC. [Online]. Available: https://wasterecycling.org/images/documents/resources/Research-Bulletin-Bioreactor-Landfills.pdf
  • [2]. R. Valencia, W. van der Zon, H. Woelders, H.J. Lubberding and H.J. Gijzen, “Achieving Final Storage Quality of municipal solid waste in pilot scale bioreactor landfills”, Waste Management, vol. 29, pp.78-85, 2009.
  • [3]. N. Sanphoti, S. Towprayoon, P. Chaiprasert and A. Nopharatana, “The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill”, Journal of Environmental Management, vol. 81, pp. 27-35, 2006.
  • [4]. F. Pohland, “Sanitary Landfill Stabilization with Leachate Recycle and Residual Treatment”. Report for EPA Grant No. R-801397, USEPA National Environmental Research Center, Cincinnati, OH, 1975.
  • [5]. I. Šan and T.T. Onay, “Impact of various leachate recirculation regimes on municipal solid waste degradation”, Journal of Hazardous Materials, vol. B87, pp. 259-271, 2001.
  • [6]. D.T. Sponza and O.N. Agdag, “Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors”, Process Biochemistry, vol. 39, pp. 2157–2165, 2004.
  • [7]. V. Francois, G. Feuillade, G. Matejka, T. Lagier and N. Skhiri, “Leachate recirculation effects on waste degradation: Study on columns”, Waste Management, vol. 27, pp. 1259-1272, 2007.
  • [8]. A.S. Erses, T.T. Onay and O. Yenigun, “Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills”, Bioresource Technology, vol. 99, pp. 5418–5426, 2008.
  • [9]. R. Bayard, H. Benbelkacem, Y. Zhang and R. Gourdon, “Impact of leachate injection modes on landfill gas production”, In: CISA Publisher (ed) Proceedings Sardinia 2009, Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 5-9 October 2009.
  • [10]. T. Mali Sandip, C. Khare Kanchan and H. Biradar Ashok, “Enhancement of methane production and bio-stabilization of municipal solid waste in anaerobic bioreactor landfill”, Bioresource Technology, vol. 110, pp. 10-17, 2012.
  • [11]. M. Warith, “Bioreactor landfills: experimental and field results”, Waste Management, vol.2 2, pp. 7-17, 2002.
  • [12]. J.W.F. Morris, N.C. Vasuki, J.A. Baker and C.H. Pendleton, “Findings from long-term monitoring studies at MSW landfill facilities with leachate recirculation”, Waste Management, vol. 23, pp. 653-666, 2003.
  • [13]. C.H. Benson, M.A. Barlaz, D.T. Lane and J.M. Rave, “Practice review of five bioreactor/recirculation landfills”, Waste Management, vol. 27, pp. 13-29, 2007.
  • [14]. V. Vigneron, A. Budka, E. Jimenez, H. Hermkes, A. Rospars, B. Jean and P Belbeze, “Bioreactor landfill: a sustainable waste treatment process”, In: CISA Publisher (ed) Proceedings Sardinia 2009, Twelfth International Waste Management an Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 5-9 October 2009.
  • [15]. H. Oonk, A. van Zomeren, T.C. Rees-White, R.P. Beaven, N. Hoekstra, L. Luning, M. Hannen, H. Hermeks and H. Woelders, “Enhanced biodegradation at the Landgraaf bioreactor test-cell”, Waste Management, vol. 33(10), pp. 2048-2060, 2013.
  • [16]. J. Chung, S. Kim, S. Baek, N. Lee, S. Park, J. Lee, H. Lee and W. Bae, “Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: A field-scale study”, Journal of Hazardous Materials, vol. 285, pp. 436–444, 2015.
  • [17]. R. Clement, M. Descloitres, T. Gunther, L. Oxarango, C. Morrra, J.P. Laurent and J.P. Gourc, “Improvement of electrical resistivity tomography for leachate”, 30, pp. 452-464, 2010.
  • [18]. N.D. Berge, D.R. Reinhart and E.S. Batarseh, “An assessment of bioreactor landfill costs and benefits”, Waste Management, vol. 29, pp.1558-1567, 2009.
  • [19]. R.Stegmann“Mechanical biological pretreatment of municipal solid waste”, In: Proceedings Sardinia 2005, Tenth International Waste Management and Landfill Symposium. S. Margherita di Pula, Cagliari, Italy; 3 - 7 October 2005, CISA Publisher, Environmental Sanitary Engineering Centre, Italy.
  • [20]. S.Grilli, A. Giordano andA. Spagni,“Stabilization of biodried municipal solid waste fine fraction in landfill bioreactor”,Waste Management, vol. 32, pp 1678-1684, 2012.
  • [21]. S.Pantini, I. Verginelli, F.Lombardi, C. Scheutz and P. Kjeldsen,“Assessment of biogas production from MBT waste under different operating conditions”,Waste Management, vol. 43, pp. 37-49, 2015.
  • [22]. F. Di Maria, C. Micale, A. Sordi and G. Cirulli,“Leachate purification of mechanically sorted organic waste in a simulated bioreactor landfill”Waste Management and Research, vol. 31, pp. 1070-1074, 2013.
  • [23]. F.Di Maria, C.Micale, E. Morettini, L. Sisani and R. Damiano,“Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district”,Waste management, vol. 44, pp. 206-215, 2015.
  • [24]. Godio A., A. Arato, F. Chiampo, B. Ruggeri, M. Di Addario, M. Fischetti and E. Perissinotto, “Liquid injection to enhance biogas production in landfills for pretreated municipal solid wastes – BIO.LEA.R. Project (LIFE+ Program)”, Environmental Engineering and Management Journal, vol. 14, pp. 1623-1636, 2015.
  • [25]. M.Grosso, S. Dellavedova, L. Rigamonti and S. Scotti,“Case study of an MBT plant producing SRF for cement kiln co-combustion, coupled with a bioreactor landfill for process residues”,Waste Management, vol. 47, pp.267-275, 2016.
  • [26]. M.Di Addarioand B. Ruggeri, “Anaerobic bioreactor landfill for bioenergy recovery”, in Recycling of Solid Waste for Biofuels and Bio-chemicals, O.P. Karthikeyan, K. Heimann and S.S. Muthu (Eds.), Singapur: Springer-Verlag, 2016.
  • [27]. H.R.Aminiand D.R. Reinhart, “Regional prediction of long-term landfill gas to energy potential”, Waste Management, vol. 31, pp. 2020-2026, 2011.
  • [28]. L.Manna, M.C. Zanetti and G. Genon, “Modeling biogas production at landfill site”, Resources, Concervation and Recycling, vol. 26, pp. 1-14, 1999.
  • [29]. A.Lobo Garcia de Cortazarand I. TejeroMonzon, “Application of simulation models to the diagnosis of MSW landfills: An example”, Waste Management, vol. 27, pp. 691-703, 2006.
  • [30]. M.S.Bilgili, A. Demir and B. Ozkaya, “Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes”, Journal of Hazardous Materials, vol. 143, pp. 177-183, 2007.
  • [31]. J.Sanderson, P. Hettiaratchi, C. Hunte, O. Hurtado and A. Keller, “Methane Balance of a Bioreactor Landfill in Latin America”, Journal of the Air and Waste Management Association, vol. 58, pp. 620-628, 2012.
  • [32]. H.R.Amini, D. Reinhart, A. Niskanen, “Comparison of first-order-decay modeled and actual field measured municipal solid waste landfill methane data”, Waste Management, vol. 33, pp. 2720-2728, 2013.
  • [33]. A.Garg, G. Achari and R.C. Joshi, “Application of Fuzzy Logic to Estimate Flow of Methane for Energy Generation at a Sanitary Landfill”, Journal of Energy Engineering, vol. 133(4), pp. 212-223, 2007.
  • [34]. F.I. Turkdogan-Aydınoland K. Yetilmezsoy, “A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater”, Journal of Hazardous Materials, vol. 182, pp. 460–471, 2012.
  • [35]. K. Yetilmezsoy, B. Ozkaya and M. Cakmakci, “Artificial Intelligence-based Prediction Models for Environmental Engineering”, Neural Network World, vol.3/11, pp. 193-218, 2011.
  • [36]. M. Abdallah, L. Fernandes, M. Warith and S. Rendra, “A fuzzy logic model for biogas generation in bioreactor landfills”, Canadian Journal of Civil Engineering, vol. 36, pp. 701–708, 2009.
  • [37]. B. Ruggeri and G. Sassi, “Macro-approach and fuzzy modelling of bioreactors”, Trends in Chemical Engineering, vol. 1, pp. 153-164, 1993.
  • [38]. B. Ozkaya, A. Demir and M.S. Bilgili, “Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors”, Environmental Modelling and Software, vol. 22, pp. 815-822, 2007.
  • [39]. Y. Hao, W. Wu, S. Wu, H. Sun and Y. Chen, “Municipal solid waste decomposition under oversaturated condition in comparison with leachate recirculation”, Process biochemistry, vol. 43, pp. 108-112, 2008.
  • [40]. L. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, pp. 338-353, 1965.
  • [41]. B. Ruggeri, G. Sassi, F. Bosco, “Macro Approach and Fuzzy Modeling of Entrapped Biocatalyst”, Biotechnology Progress, vol. 16(1), pp. 44-51, 2000.
  • [42]. S.N.Sivandam, Sumathi S. and Deepa S.N., Introduction to fuzzy logic using MATLAB. Springer-Verlag, Berlin, 2007.
  • [43]. M.Estaben, Polit M. and Steyer J.P., “Fuzzy control for an anaerobic digester”,Control Engineering Practice, vol. 5, pp. 1303-1310, 1997.
  • [44]. B. Ruggeri and G. Sassi, “On the modelling approach of biomass behavior in bioreactor”, Chemical Engineering Communications, vol.122, pp.1-56, 1993.
  • [45]. J. Gomez-Sanchis, J.D. Martin-Guerrero, E. Soria-Olivas, J. Vila-Frances, J.L. Carrasco and S. Del Valle-Toscon, “Neural networks for analyzing the relevance of input variables in the prediction of tropospheric ozone concentration”, Atmospheric Environment, vol.40, pp. 6173-6180, 2006.
  • [46]. K. Yetilmezsoy, F.I. Turkdogan, I. Temizel and A. Gunay, “Development of ANN-based model to predict biogas and methane productions in anaerobic treatment of molasses wastewater”, International Journal of Green Energy, vol.10, pp. 885-907, 2013.
  • [47]. (2017) BIO.LEA.R. Project Website. [Online]. Available: www.biolear.eu
  • [48]. H. Vigneault, R. Lefebvre and M. Nastev, “Numerical simulation of the radius of influence for landfill gas wells”, Vadose Zone Journal, vol. 3, pp.909-916, 2004.

Fuzzy Approach to Predict Methane Production in Full-Scale Bioreactor Landfills

Year 2018, Volume: 1 Issue: 1, 4 - 13, 01.01.2018

Abstract
















Bioreactor landfills
(BRLs) aim to increase moisture content of municipal solid waste to enhance the
biodegradation kinetics of the organic fraction and biogas production.
Prediction of biogas production is a key tool to design an appropriate energy
recovery system from BRLs. In this paper, a fuzzy-based model to predict
methane generation in full scale BRLs is proposed. Eleven deterministic inputs
(pH, RedOx potential, chemical oxygen demand, volatile fatty acids, ammonium
content, age of the waste, temperature, moisture content, organic fraction
concentration, particle size and recirculation flow rate) were identified as
antecedent variables. Two outputs, or consequents, were chosen: methane
production rate and methane fraction in the biogas. Antecedents and consequents
were transported in the fuzzy domain by a fuzzyfication procedure and then
linked by 84 IF-THEN rules, which stated the effects of the input parameters in
a linguistic form. The fuzzy model was built and tested on seven lab-scale
studies, representing different operational conditions and waste qualities. The
fuzzy model showed good performances in the prediction of methane generation, although
lab-scale studies depicted ideal conditions that can be hardly reached in real
BRLs. In order to deal with higher heterogeneities and lower data availability
typical of full-scale landfills, new antecedents and rules were added to the
proposed model. With few adjustments based on the available information, the
fuzzy model could be applied to a retrofit BRLs located in Northern Italy. The
results confirmed that fuzzy macro-approach can be a powerful and flexible tool
able to model the complex processes taking place in BRLs.
    

References

  • [1]. E.W. Repa. (2003), “Bioreactor landfills: a viable technology”, National Solid Wastes Management Association NSWMA, Washington DC. [Online]. Available: https://wasterecycling.org/images/documents/resources/Research-Bulletin-Bioreactor-Landfills.pdf
  • [2]. R. Valencia, W. van der Zon, H. Woelders, H.J. Lubberding and H.J. Gijzen, “Achieving Final Storage Quality of municipal solid waste in pilot scale bioreactor landfills”, Waste Management, vol. 29, pp.78-85, 2009.
  • [3]. N. Sanphoti, S. Towprayoon, P. Chaiprasert and A. Nopharatana, “The effects of leachate recirculation with supplemental water addition on methane production and waste decomposition in a simulated tropical landfill”, Journal of Environmental Management, vol. 81, pp. 27-35, 2006.
  • [4]. F. Pohland, “Sanitary Landfill Stabilization with Leachate Recycle and Residual Treatment”. Report for EPA Grant No. R-801397, USEPA National Environmental Research Center, Cincinnati, OH, 1975.
  • [5]. I. Šan and T.T. Onay, “Impact of various leachate recirculation regimes on municipal solid waste degradation”, Journal of Hazardous Materials, vol. B87, pp. 259-271, 2001.
  • [6]. D.T. Sponza and O.N. Agdag, “Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors”, Process Biochemistry, vol. 39, pp. 2157–2165, 2004.
  • [7]. V. Francois, G. Feuillade, G. Matejka, T. Lagier and N. Skhiri, “Leachate recirculation effects on waste degradation: Study on columns”, Waste Management, vol. 27, pp. 1259-1272, 2007.
  • [8]. A.S. Erses, T.T. Onay and O. Yenigun, “Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills”, Bioresource Technology, vol. 99, pp. 5418–5426, 2008.
  • [9]. R. Bayard, H. Benbelkacem, Y. Zhang and R. Gourdon, “Impact of leachate injection modes on landfill gas production”, In: CISA Publisher (ed) Proceedings Sardinia 2009, Twelfth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 5-9 October 2009.
  • [10]. T. Mali Sandip, C. Khare Kanchan and H. Biradar Ashok, “Enhancement of methane production and bio-stabilization of municipal solid waste in anaerobic bioreactor landfill”, Bioresource Technology, vol. 110, pp. 10-17, 2012.
  • [11]. M. Warith, “Bioreactor landfills: experimental and field results”, Waste Management, vol.2 2, pp. 7-17, 2002.
  • [12]. J.W.F. Morris, N.C. Vasuki, J.A. Baker and C.H. Pendleton, “Findings from long-term monitoring studies at MSW landfill facilities with leachate recirculation”, Waste Management, vol. 23, pp. 653-666, 2003.
  • [13]. C.H. Benson, M.A. Barlaz, D.T. Lane and J.M. Rave, “Practice review of five bioreactor/recirculation landfills”, Waste Management, vol. 27, pp. 13-29, 2007.
  • [14]. V. Vigneron, A. Budka, E. Jimenez, H. Hermkes, A. Rospars, B. Jean and P Belbeze, “Bioreactor landfill: a sustainable waste treatment process”, In: CISA Publisher (ed) Proceedings Sardinia 2009, Twelfth International Waste Management an Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, 5-9 October 2009.
  • [15]. H. Oonk, A. van Zomeren, T.C. Rees-White, R.P. Beaven, N. Hoekstra, L. Luning, M. Hannen, H. Hermeks and H. Woelders, “Enhanced biodegradation at the Landgraaf bioreactor test-cell”, Waste Management, vol. 33(10), pp. 2048-2060, 2013.
  • [16]. J. Chung, S. Kim, S. Baek, N. Lee, S. Park, J. Lee, H. Lee and W. Bae, “Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: A field-scale study”, Journal of Hazardous Materials, vol. 285, pp. 436–444, 2015.
  • [17]. R. Clement, M. Descloitres, T. Gunther, L. Oxarango, C. Morrra, J.P. Laurent and J.P. Gourc, “Improvement of electrical resistivity tomography for leachate”, 30, pp. 452-464, 2010.
  • [18]. N.D. Berge, D.R. Reinhart and E.S. Batarseh, “An assessment of bioreactor landfill costs and benefits”, Waste Management, vol. 29, pp.1558-1567, 2009.
  • [19]. R.Stegmann“Mechanical biological pretreatment of municipal solid waste”, In: Proceedings Sardinia 2005, Tenth International Waste Management and Landfill Symposium. S. Margherita di Pula, Cagliari, Italy; 3 - 7 October 2005, CISA Publisher, Environmental Sanitary Engineering Centre, Italy.
  • [20]. S.Grilli, A. Giordano andA. Spagni,“Stabilization of biodried municipal solid waste fine fraction in landfill bioreactor”,Waste Management, vol. 32, pp 1678-1684, 2012.
  • [21]. S.Pantini, I. Verginelli, F.Lombardi, C. Scheutz and P. Kjeldsen,“Assessment of biogas production from MBT waste under different operating conditions”,Waste Management, vol. 43, pp. 37-49, 2015.
  • [22]. F. Di Maria, C. Micale, A. Sordi and G. Cirulli,“Leachate purification of mechanically sorted organic waste in a simulated bioreactor landfill”Waste Management and Research, vol. 31, pp. 1070-1074, 2013.
  • [23]. F.Di Maria, C.Micale, E. Morettini, L. Sisani and R. Damiano,“Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district”,Waste management, vol. 44, pp. 206-215, 2015.
  • [24]. Godio A., A. Arato, F. Chiampo, B. Ruggeri, M. Di Addario, M. Fischetti and E. Perissinotto, “Liquid injection to enhance biogas production in landfills for pretreated municipal solid wastes – BIO.LEA.R. Project (LIFE+ Program)”, Environmental Engineering and Management Journal, vol. 14, pp. 1623-1636, 2015.
  • [25]. M.Grosso, S. Dellavedova, L. Rigamonti and S. Scotti,“Case study of an MBT plant producing SRF for cement kiln co-combustion, coupled with a bioreactor landfill for process residues”,Waste Management, vol. 47, pp.267-275, 2016.
  • [26]. M.Di Addarioand B. Ruggeri, “Anaerobic bioreactor landfill for bioenergy recovery”, in Recycling of Solid Waste for Biofuels and Bio-chemicals, O.P. Karthikeyan, K. Heimann and S.S. Muthu (Eds.), Singapur: Springer-Verlag, 2016.
  • [27]. H.R.Aminiand D.R. Reinhart, “Regional prediction of long-term landfill gas to energy potential”, Waste Management, vol. 31, pp. 2020-2026, 2011.
  • [28]. L.Manna, M.C. Zanetti and G. Genon, “Modeling biogas production at landfill site”, Resources, Concervation and Recycling, vol. 26, pp. 1-14, 1999.
  • [29]. A.Lobo Garcia de Cortazarand I. TejeroMonzon, “Application of simulation models to the diagnosis of MSW landfills: An example”, Waste Management, vol. 27, pp. 691-703, 2006.
  • [30]. M.S.Bilgili, A. Demir and B. Ozkaya, “Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes”, Journal of Hazardous Materials, vol. 143, pp. 177-183, 2007.
  • [31]. J.Sanderson, P. Hettiaratchi, C. Hunte, O. Hurtado and A. Keller, “Methane Balance of a Bioreactor Landfill in Latin America”, Journal of the Air and Waste Management Association, vol. 58, pp. 620-628, 2012.
  • [32]. H.R.Amini, D. Reinhart, A. Niskanen, “Comparison of first-order-decay modeled and actual field measured municipal solid waste landfill methane data”, Waste Management, vol. 33, pp. 2720-2728, 2013.
  • [33]. A.Garg, G. Achari and R.C. Joshi, “Application of Fuzzy Logic to Estimate Flow of Methane for Energy Generation at a Sanitary Landfill”, Journal of Energy Engineering, vol. 133(4), pp. 212-223, 2007.
  • [34]. F.I. Turkdogan-Aydınoland K. Yetilmezsoy, “A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater”, Journal of Hazardous Materials, vol. 182, pp. 460–471, 2012.
  • [35]. K. Yetilmezsoy, B. Ozkaya and M. Cakmakci, “Artificial Intelligence-based Prediction Models for Environmental Engineering”, Neural Network World, vol.3/11, pp. 193-218, 2011.
  • [36]. M. Abdallah, L. Fernandes, M. Warith and S. Rendra, “A fuzzy logic model for biogas generation in bioreactor landfills”, Canadian Journal of Civil Engineering, vol. 36, pp. 701–708, 2009.
  • [37]. B. Ruggeri and G. Sassi, “Macro-approach and fuzzy modelling of bioreactors”, Trends in Chemical Engineering, vol. 1, pp. 153-164, 1993.
  • [38]. B. Ozkaya, A. Demir and M.S. Bilgili, “Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors”, Environmental Modelling and Software, vol. 22, pp. 815-822, 2007.
  • [39]. Y. Hao, W. Wu, S. Wu, H. Sun and Y. Chen, “Municipal solid waste decomposition under oversaturated condition in comparison with leachate recirculation”, Process biochemistry, vol. 43, pp. 108-112, 2008.
  • [40]. L. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, pp. 338-353, 1965.
  • [41]. B. Ruggeri, G. Sassi, F. Bosco, “Macro Approach and Fuzzy Modeling of Entrapped Biocatalyst”, Biotechnology Progress, vol. 16(1), pp. 44-51, 2000.
  • [42]. S.N.Sivandam, Sumathi S. and Deepa S.N., Introduction to fuzzy logic using MATLAB. Springer-Verlag, Berlin, 2007.
  • [43]. M.Estaben, Polit M. and Steyer J.P., “Fuzzy control for an anaerobic digester”,Control Engineering Practice, vol. 5, pp. 1303-1310, 1997.
  • [44]. B. Ruggeri and G. Sassi, “On the modelling approach of biomass behavior in bioreactor”, Chemical Engineering Communications, vol.122, pp.1-56, 1993.
  • [45]. J. Gomez-Sanchis, J.D. Martin-Guerrero, E. Soria-Olivas, J. Vila-Frances, J.L. Carrasco and S. Del Valle-Toscon, “Neural networks for analyzing the relevance of input variables in the prediction of tropospheric ozone concentration”, Atmospheric Environment, vol.40, pp. 6173-6180, 2006.
  • [46]. K. Yetilmezsoy, F.I. Turkdogan, I. Temizel and A. Gunay, “Development of ANN-based model to predict biogas and methane productions in anaerobic treatment of molasses wastewater”, International Journal of Green Energy, vol.10, pp. 885-907, 2013.
  • [47]. (2017) BIO.LEA.R. Project Website. [Online]. Available: www.biolear.eu
  • [48]. H. Vigneault, R. Lefebvre and M. Nastev, “Numerical simulation of the radius of influence for landfill gas wells”, Vadose Zone Journal, vol. 3, pp.909-916, 2004.
There are 48 citations in total.

Details

Subjects Environmental Engineering
Journal Section Research Articles
Authors

Martina Di Addario 0000-0002-1263-8453

Bernardo Ruggeri This is me

Publication Date January 1, 2018
Submission Date April 27, 2017
Acceptance Date May 16, 2017
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Di Addario, M., & Ruggeri, B. (2018). Fuzzy Approach to Predict Methane Production in Full-Scale Bioreactor Landfills. Environmental Research and Technology, 1(1), 4-13.
AMA Di Addario M, Ruggeri B. Fuzzy Approach to Predict Methane Production in Full-Scale Bioreactor Landfills. ERT. January 2018;1(1):4-13.
Chicago Di Addario, Martina, and Bernardo Ruggeri. “Fuzzy Approach to Predict Methane Production in Full-Scale Bioreactor Landfills”. Environmental Research and Technology 1, no. 1 (January 2018): 4-13.
EndNote Di Addario M, Ruggeri B (January 1, 2018) Fuzzy Approach to Predict Methane Production in Full-Scale Bioreactor Landfills. Environmental Research and Technology 1 1 4–13.
IEEE M. Di Addario and B. Ruggeri, “Fuzzy Approach to Predict Methane Production in Full-Scale Bioreactor Landfills”, ERT, vol. 1, no. 1, pp. 4–13, 2018.
ISNAD Di Addario, Martina - Ruggeri, Bernardo. “Fuzzy Approach to Predict Methane Production in Full-Scale Bioreactor Landfills”. Environmental Research and Technology 1/1 (January 2018), 4-13.
JAMA Di Addario M, Ruggeri B. Fuzzy Approach to Predict Methane Production in Full-Scale Bioreactor Landfills. ERT. 2018;1:4–13.
MLA Di Addario, Martina and Bernardo Ruggeri. “Fuzzy Approach to Predict Methane Production in Full-Scale Bioreactor Landfills”. Environmental Research and Technology, vol. 1, no. 1, 2018, pp. 4-13.
Vancouver Di Addario M, Ruggeri B. Fuzzy Approach to Predict Methane Production in Full-Scale Bioreactor Landfills. ERT. 2018;1(1):4-13.